Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 594(7863): 442-447, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34079126

RESUMO

Interactions between tumour cells and the surrounding microenvironment contribute to tumour progression, metastasis and recurrence1-3. Although mosaic analyses in Drosophila have advanced our understanding of such interactions4,5, it has been difficult to engineer parallel approaches in vertebrates. Here we present an oncogene-associated, multicolour reporter mouse model-the Red2Onco system-that allows differential tracing of mutant and wild-type cells in the same tissue. By applying this system to the small intestine, we show that oncogene-expressing mutant crypts alter the cellular organization of neighbouring wild-type crypts, thereby driving accelerated clonal drift. Crypts that express oncogenic KRAS or PI3K secrete BMP ligands that suppress local stem cell activity, while changes in PDGFRloCD81+ stromal cells induced by crypts with oncogenic PI3K alter the WNT signalling environment. Together, these results show how oncogene-driven paracrine remodelling creates a niche environment that is detrimental to the maintenance of wild-type tissue, promoting field transformation dominated by oncogenic clones.


Assuntos
Neoplasias Colorretais/patologia , Intestino Delgado/patologia , Células-Tronco Neoplásicas/patologia , Oncogenes , Nicho de Células-Tronco , Animais , Células Clonais/patologia , Neoplasias Colorretais/genética , Feminino , Intestino Delgado/metabolismo , Masculino , Camundongos , Mutação , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Reprodutibilidade dos Testes , Análise de Célula Única , Nicho de Células-Tronco/genética , Microambiente Tumoral , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt
2.
Nat Cell Biol ; 23(5): 511-525, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33972733

RESUMO

Epithelial cells rapidly adapt their behaviour in response to increasing tissue demands. However, the processes that finely control these cell decisions remain largely unknown. The postnatal period covering the transition between early tissue expansion and the establishment of adult homeostasis provides a convenient model with which to explore this question. Here, we demonstrate that the onset of homeostasis in the epithelium of the mouse oesophagus is guided by the progressive build-up of mechanical strain at the organ level. Single-cell RNA sequencing and whole-organ stretching experiments revealed that the mechanical stress experienced by the growing oesophagus triggers the emergence of a bright Krüppel-like factor 4 (KLF4) committed basal population, which balances cell proliferation and marks the transition towards homeostasis in a yes-associated protein (YAP)-dependent manner. Our results point to a simple mechanism whereby mechanical changes experienced at the whole-tissue level are integrated with those sensed at the cellular level to control epithelial cell fate.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Epiteliais/metabolismo , Homeostase/fisiologia , Animais , Epitélio/metabolismo , Mucosa Esofágica/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Células-Tronco/metabolismo
3.
Adv Mater ; 31(7): e1806380, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30614086

RESUMO

Biomaterial scaffolds that are designed to incorporate dynamic, spatiotemporal information have the potential to interface with cells and tissues to direct behavior. Here, a bioinspired, programmable nanotechnology-based platform is described that harnesses cellular traction forces to activate growth factors, eliminating the need for exogenous triggers (e.g., light), spatially diffuse triggers (e.g., enzymes, pH changes), or passive activation (e.g., hydrolysis). Flexible aptamer technology is used to create modular, synthetic mimics of the Large Latent Complex that restrains transforming growth factor-ß1 (TGF-ß1). This flexible nanotechnology-based approach is shown here to work with both platelet-derived growth factor-BB (PDGF-BB) and vascular endothelial growth factor (VEGF-165), integrate with glass coverslips, polyacrylamide gels, and collagen scaffolds, enable activation by various cells (e.g., primary human dermal fibroblasts, HMEC-1 endothelial cells), and unlock fundamentally new capabilities such as selective activation of growth factors by differing cell types (e.g., activation by smooth muscle cells but not fibroblasts) within clinically relevant collagen sponges.


Assuntos
Aptâmeros de Nucleotídeos , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Alicerces Teciduais , Fenômenos Biomecânicos , Materiais Biomiméticos , Adesão Celular , Células Cultivadas , Derme/citologia , Derme/metabolismo , Elasticidade , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Nanotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA