Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 4026, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419900

RESUMO

Platelets, small hemostatic blood cells, are derived from megakaryocytes. Both bone marrow and lung are principal sites of thrombopoiesis although underlying mechanisms remain unclear. Outside the body, however, our ability to generate large number of functional platelets is poor. Here we show that perfusion of megakaryocytes ex vivo through the mouse lung vasculature generates substantial platelet numbers, up to 3000 per megakaryocyte. Despite their large size, megakaryocytes are able repeatedly to passage through the lung vasculature, leading to enucleation and subsequent platelet generation intravascularly. Using ex vivo lung and an in vitro microfluidic chamber we determine how oxygenation, ventilation, healthy pulmonary endothelium and the microvascular structure support thrombopoiesis. We also show a critical role for the actin regulator Tropomyosin 4 in the final steps of platelet formation in lung vasculature. This work reveals the mechanisms of thrombopoiesis in lung vasculature and informs approaches to large-scale generation of platelets.


Assuntos
Plaquetas , Microfluídica , Camundongos , Animais , Megacariócitos , Trombopoese , Pulmão
3.
Front Immunol ; 14: 1197894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359521

RESUMO

Zinc (Zn2+) is considered as important mediator of immune cell function, thrombosis and haemostasis. However, our understanding of the transport mechanisms that regulate Zn2+ homeostasis in platelets is limited. Zn2+ transporters, ZIPs and ZnTs, are widely expressed in eukaryotic cells. Using mice globally lacking ZIP1 and ZIP3 (ZIP1/3 DKO), our aim was to explore the potential role of these Zn2+ transporters in maintaining platelet Zn2+ homeostasis and in the regulation of platelet function. While ICP-MS measurements indicated unaltered overall Zn2+ concentrations in platelets of ZIP1/3 DKO mice, we observed a significantly increased content of FluoZin3-stainable free Zn2+, which, however, appears to be released less efficiently upon thrombin-stimulated platelet activation. On the functional level, ZIP1/3 DKO platelets exhibited a hyperactive response towards threshold concentrations of G protein-coupled receptor (GPCR) agonists, while immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptor agonist signalling was unaffected. This resulted in enhanced platelet aggregation towards thrombin, bigger thrombus volume under flow ex vivo and faster in vivo thrombus formation in ZIP1/3 DKO mice. Molecularly, augmented GPCR responses were accompanied by enhanced Ca2+ and PKC, CamKII and ERK1/2 signalling. The current study thereby identifies ZIP1 and ZIP3 as important regulators for the maintenance of platelet Zn2+ homeostasis and function.


Assuntos
Trombose , Animais , Camundongos , Plaquetas , Proteínas de Transporte/farmacologia , Trombina/farmacologia
4.
Blood Adv ; 6(17): 5184-5197, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35819450

RESUMO

Megakaryocytes are large cells in the bone marrow that give rise to blood platelets. Platelet biogenesis involves megakaryocyte maturation, the localization of the mature cells in close proximity to bone marrow sinusoids, and the formation of protrusions, which are elongated and shed within the circulation. Rho GTPases play important roles in platelet biogenesis and function. RhoA-deficient mice display macrothrombocytopenia and a striking mislocalization of megakaryocytes into bone marrow sinusoids and a specific defect in G-protein signaling in platelets. However, the role of the closely related protein RhoB in megakaryocytes or platelets remains unknown. In this study, we show that, in contrast to RhoA deficiency, genetic ablation of RhoB in mice results in microthrombocytopenia (decreased platelet count and size). RhoB-deficient platelets displayed mild functional defects predominantly upon induction of the collagen/glycoprotein VI pathway. Megakaryocyte maturation and localization within the bone marrow, as well as actin dynamics, were not affected in the absence of RhoB. However, in vitro-generated proplatelets revealed pronouncedly impaired microtubule organization. Furthermore, RhoB-deficient platelets and megakaryocytes displayed selective defects in microtubule dynamics/stability, correlating with reduced levels of acetylated α-tubulin. Our findings imply that the reduction of this tubulin posttranslational modification results in impaired microtubule dynamics, which might contribute to microthrombocytopenia in RhoB-deficient mice. Importantly, we demonstrate that RhoA and RhoB are localized differently and have selective, nonredundant functions in the megakaryocyte lineage.


Assuntos
Megacariócitos , Trombocitopenia , Proteína rhoB de Ligação ao GTP/metabolismo , Animais , Plaquetas/metabolismo , Megacariócitos/metabolismo , Camundongos , Microtúbulos/metabolismo , Trombocitopenia/genética , Tubulina (Proteína)/metabolismo
5.
Blood Adv ; 6(10): 3155-3161, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35134123

RESUMO

G6b-B is a megakaryocyte lineage-specific immunoreceptor tyrosine-based inhibition motif-containing receptor, essential for platelet homeostasis. Mice with a genomic deletion of the entire Mpig6b locus develop severe macrothrombocytopenia and myelofibrosis, which is reflected in humans with null mutations in MPIG6B. The current model proposes that megakaryocytes lacking G6b-B develop normally, whereas proplatelet release is hampered, but the underlying molecular mechanism remains unclear. We report on a spontaneous recessive single nucleotide mutation in C57BL/6 mice, localized within the intronic region of the Mpig6b locus that abolishes G6b-B expression and reproduces macrothrombocytopenia, myelofibrosis, and osteosclerosis. As the mutation is based on a single-nucleotide exchange, Mpig6bmut mice represent an ideal model to study the role of G6b-B. Megakaryocytes from these mice were smaller, displayed a less-developed demarcation membrane system, and had a reduced expression of receptors. RNA sequencing revealed a striking global reduction in the level of megakaryocyte-specific transcripts, in conjunction with decreased protein levels of the transcription factor GATA-1 and impaired thrombopoietin signaling. The reduced number of mature MKs in the bone marrow was corroborated on a newly developed Mpig6b-null mouse strain. Our findings highlight an unexpected essential role of G6b-B in the early differentiation within the megakaryocytic lineage.


Assuntos
Mielofibrose Primária , Trombocitopenia , Animais , Plaquetas/metabolismo , Megacariócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nucleotídeos/metabolismo , Mielofibrose Primária/genética , Trombocitopenia/genética , Trombocitopenia/metabolismo
6.
Cell Rep ; 35(6): 109102, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33979620

RESUMO

Megakaryocytes (MKs), the precursors of blood platelets, are large, polyploid cells residing mainly in the bone marrow. We have previously shown that balanced signaling of the Rho GTPases RhoA and Cdc42 is critical for correct MK localization at bone marrow sinusoids in vivo. Using conditional RhoA/Cdc42 double-knockout (DKO) mice, we reveal here that RhoA/Cdc42 signaling is dispensable for the process of polyploidization in MKs but essential for cytoplasmic MK maturation. Proplatelet formation is virtually abrogated in the absence of RhoA/Cdc42 and leads to severe macrothrombocytopenia in DKO animals. The MK maturation defect is associated with downregulation of myosin light chain 2 (MLC2) and ß1-tubulin, as well as an upregulation of LIM kinase 1 and cofilin-1 at both the mRNA and protein level and can be linked to impaired MKL1/SRF signaling. Our findings demonstrate that MK endomitosis and cytoplasmic maturation are separately regulated processes, and the latter is critically controlled by RhoA/Cdc42.


Assuntos
Citoplasma/metabolismo , Megacariócitos/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Humanos , Camundongos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA