Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vet Res ; 55(1): 64, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773649

RESUMO

Zoonotic diseases represent a significant societal challenge in terms of their health and economic impacts. One Health approaches to managing zoonotic diseases are becoming more prevalent, but require novel thinking, tools and cross-disciplinary collaboration. Bovine tuberculosis (bTB) is one example of a costly One Health challenge with a complex epidemiology involving humans, domestic animals, wildlife and environmental factors, which require sophisticated collaborative approaches. We undertook a scoping review of multi-host bTB epidemiology to identify trends in species publication focus, methodologies, and One Health approaches. We aimed to identify knowledge gaps where novel research could provide insights to inform control policy, for bTB and other zoonoses. The review included 532 articles. We found different levels of research attention across episystems, with a significant proportion of the literature focusing on the badger-cattle-TB episystem, with far less attention given to tropical multi-host episystems. We found a limited number of studies focusing on management solutions and their efficacy, with very few studies looking at modelling exit strategies. Only a small number of studies looked at the effect of human disturbances on the spread of bTB involving wildlife hosts. Most of the studies we reviewed focused on the effect of badger vaccination and culling on bTB dynamics with few looking at how roads, human perturbations and habitat change may affect wildlife movement and disease spread. Finally, we observed a lack of studies considering the effect of weather variables on bTB spread, which is particularly relevant when studying zoonoses under climate change scenarios. Significant technological and methodological advances have been applied to bTB episystems, providing explicit insights into its spread and maintenance across populations. We identified a prominent bias towards certain species and locations. Generating more high-quality empirical data on wildlife host distribution and abundance, high-resolution individual behaviours and greater use of mathematical models and simulations are key areas for future research. Integrating data sources across disciplines, and a "virtuous cycle" of well-designed empirical data collection linked with mathematical and simulation modelling could provide additional gains for policy-makers and managers, enabling optimised bTB management with broader insights for other zoonoses.


Assuntos
Tuberculose Bovina , Zoonoses , Animais , Tuberculose Bovina/prevenção & controle , Tuberculose Bovina/epidemiologia , Bovinos , Zoonoses/prevenção & controle , Humanos , Animais Selvagens , Saúde Única , Mustelidae/fisiologia
2.
Nat Ecol Evol ; 8(5): 972-985, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38689017

RESUMO

Gut microbes shape many aspects of organismal biology, yet how these key bacteria transmit among hosts in natural populations remains poorly understood. Recent work in mammals has emphasized either transmission through social contacts or indirect transmission through environmental contact, but the relative importance of different routes has not been directly assessed. Here we used a novel radio-frequency identification-based tracking system to collect long-term high-resolution data on social relationships, space use and microhabitat in a wild population of mice (Apodemus sylvaticus), while regularly characterizing their gut microbiota with 16S ribosomal RNA profiling. Through probabilistic modelling of the resulting data, we identify positive and statistically distinct signals of social and environmental transmission, captured by social networks and overlap in home ranges, respectively. Strikingly, microorganisms with distinct biological attributes drove these different transmission signals. While the social network effect on microbiota was driven by anaerobic bacteria, the effect of shared space was most influenced by aerotolerant spore-forming bacteria. These findings support the prediction that social contact is important for the transfer of microorganisms with low oxygen tolerance, while those that can tolerate oxygen or form spores may be able to transmit indirectly through the environment. Overall, these results suggest social and environmental transmission routes can spread biologically distinct members of the mammalian gut microbiota.


Assuntos
Microbioma Gastrointestinal , Animais , RNA Ribossômico 16S/análise , Murinae/microbiologia , Comportamento Social , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Masculino , Feminino , Camundongos
3.
Mov Ecol ; 12(1): 7, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254232

RESUMO

Foraging is a key driver of animal movement patterns, with specific challenges for predators which must search for mobile prey. These patterns are increasingly impacted by global changes, principally in land use and climate. Understanding the degree of flexibility in predator foraging and social strategies is pertinent to wildlife conservation under global change, including potential top-down effects on wider ecosystems. Here we propose key future research directions to better understand foraging strategies and social flexibility in predators. In particular, rapid continued advances in biologging technology are helping to record and understand dynamic behavioural and movement responses of animals to environmental changes, and their energetic consequences. Data collection can be optimised by calibrating behavioural interpretation methods in captive settings and strategic tagging decisions within and between social groups. Importantly, many species' social systems are increasingly being found to be more flexible than originally described in the literature, which may be more readily detectable through biologging approaches than behavioural observation. Integrating the effects of the physical landscape and biotic interactions will be key to explaining and predicting animal movements and energetic balance in a changing world.

4.
Front Microbiol ; 13: 809735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547129

RESUMO

The gut microbiome performs many important functions in mammalian hosts, with community composition shaping its functional role. However, the factors that drive individual microbiota variation in wild animals and to what extent these are predictable or idiosyncratic across populations remains poorly understood. Here, we use a multi-population dataset from a common rodent species (the wood mouse, Apodemus sylvaticus), to test whether a consistent "core" gut microbiota is identifiable in this species, and to what extent the predictors of microbiota variation are consistent across populations. Between 2014 and 2018 we used capture-mark-recapture and 16S rRNA profiling to intensively monitor two wild wood mouse populations and their gut microbiota, as well as characterising the microbiota from a laboratory-housed colony of the same species. Although the microbiota was broadly similar at high taxonomic levels, the two wild populations did not share a single bacterial amplicon sequence variant (ASV), despite being only 50km apart. Meanwhile, the laboratory-housed colony shared many ASVs with one of the wild populations from which it is thought to have been founded decades ago. Despite not sharing any ASVs, the two wild populations shared a phylogenetically more similar microbiota than either did with the colony, and the factors predicting compositional variation in each wild population were remarkably similar. We identified a strong and consistent pattern of seasonal microbiota restructuring that occurred at both sites, in all years, and within individual mice. While the microbiota was highly individualised, some seasonal convergence occurred in late winter/early spring. These findings reveal highly repeatable seasonal gut microbiota dynamics in multiple populations of this species, despite different taxa being involved. This provides a platform for future work to understand the drivers and functional implications of such predictable seasonal microbiome restructuring, including whether it might provide the host with adaptive seasonal phenotypic plasticity.

5.
Ecol Evol ; 10(23): 12949-12959, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304507

RESUMO

Investigating the range and population dynamics of introduced species provides insight into species behavior, habitat preferences, and potential of becoming established. Here, we show the current population status of the red-necked wallaby (Notamacropus rufogriseus) in Britain based on records from an eleven-year period (2008-2018). Records were obtained from Local Environmental Records Centres (LERCs), the National Biodiversity Network (NBN), and popular media. All records were mapped and compared to a historical distribution map (1940-2007), derived from published data. A total of 95 confirmed wallaby sightings were recorded between 2008 and 2018, of which 64 came from media sources, 18 from Local Environmental Records Centres (LERCs), seven from the National Biodiversity Network (NBN), and six from the published literature (Yalden, Br. Wildl., 24, 2013, 169). The greatest density of wallaby sightings was in southern England, with the Chiltern Hills Area of Outstanding Natural Beauty a particular hot spot (n = 11). More sightings were recorded in August than in any other month. Much of the species' ecology and responses to British biota and anthropogenic pressures are unknown, and therefore, further research is warranted. The methods used here are widely applicable to other non-native species, particularly those that the public are more likely to report and could be an important supplement to existing studies of conservation and management relevance.

6.
J Anim Ecol ; 89(1): 186-206, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31424571

RESUMO

The paradigm-changing opportunities of biologging sensors for ecological research, especially movement ecology, are vast, but the crucial questions of how best to match the most appropriate sensors and sensor combinations to specific biological questions and how to analyse complex biologging data, are mostly ignored. Here, we fill this gap by reviewing how to optimize the use of biologging techniques to answer questions in movement ecology and synthesize this into an Integrated Biologging Framework (IBF). We highlight that multisensor approaches are a new frontier in biologging, while identifying current limitations and avenues for future development in sensor technology. We focus on the importance of efficient data exploration, and more advanced multidimensional visualization methods, combined with appropriate archiving and sharing approaches, to tackle the big data issues presented by biologging. We also discuss the challenges and opportunities in matching the peculiarities of specific sensor data to the statistical models used, highlighting at the same time the large advances which will be required in the latter to properly analyse biologging data. Taking advantage of the biologging revolution will require a large improvement in the theoretical and mathematical foundations of movement ecology, to include the rich set of high-frequency multivariate data, which greatly expand the fundamentally limited and coarse data that could be collected using location-only technology such as GPS. Equally important will be the establishment of multidisciplinary collaborations to catalyse the opportunities offered by current and future biologging technology. If this is achieved, clear potential exists for developing a vastly improved mechanistic understanding of animal movements and their roles in ecological processes and for building realistic predictive models.


Assuntos
Ecologia , Movimento , Animais
7.
Evolution ; 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29972584

RESUMO

The way an animal moves reveals key aspects of its ecology. Carnivore forelimbs are adapted to their predation style, and the structure of the elbow joint can indicate hunting strategy. In this issue, Figueirido (2018) investigates phenotypic disparity, or morphological variation, in domestic dog breeds, the canid family, and the carnivore order using the elbow joint as an indicator of movement and predatory behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA