Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Stereotact Funct Neurosurg ; : 1-16, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697047

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is an effective therapy for Parkinson's disease (PD), but disparities exist in access to DBS along gender, racial, and socioeconomic lines. SUMMARY: Women are underrepresented in clinical trials and less likely to undergo DBS compared to their male counterparts. Racial and ethnic minorities are also less likely to undergo DBS procedures, even when controlling for disease severity and other demographic factors. These disparities can have significant impacts on patients' access to care, quality of life, and ability to manage their debilitating movement disorders. KEY MESSAGES: Addressing these disparities requires increasing patient awareness and education, minimizing barriers to equitable access, and implementing diversity and inclusion initiatives within the healthcare system. In this systematic review, we first review literature discussing gender, racial, and socioeconomic disparities in DBS access and then propose several patient, provider, community, and national-level interventions to improve DBS access for all populations.

2.
bioRxiv ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38645237

RESUMO

Risk taking behavior is a symptom of multiple neuropsychiatric disorders and often lacks effective treatments. Reward circuitry regions including the amygdala, orbitofrontal cortex, insula, and anterior cingulate have been implicated in risk-taking by neuroimaging studies. Electrophysiological activity associated with risk taking in these regions is not well understood in humans. Further characterizing the neural signalling that underlies risk-taking may provide therapeutic insight into disorders associated with risk-taking. Eleven patients with pharmacoresistant epilepsy who underwent stereotactic electroencephalography with electrodes in the amygdala, orbitofrontal cortex, insula, and/or anterior cingulate participated. Patients participated in a gambling task where they wagered on a visible playing card being higher than a hidden card, betting $5 or $20 on this outcome, while local field potentials were recorded from implanted electrodes. We used cluster-based permutation testing to identify reward prediction error signals by comparing oscillatory power following unexpected and expected rewards. We also used cluster-based permutation testing to compare power preceding high and low bets in high-risk (<50% chance of winning) trials and two-way ANOVA with bet and risk level to identify signals associated with risky, risk averse, and optimized decisions. We used linear mixed effects models to evaluate the relationship between reward prediction error and risky decision signals across trials, and a linear regression model for associations between risky decision signal power and Barratt Impulsiveness Scale scores for each patient. Reward prediction error signals were identified in the amygdala (p=0.0066), anterior cingulate (p=0.0092), and orbitofrontal cortex (p=6.0E-4, p=4.0E-4). Risky decisions were predicted by increased oscillatory power in high-gamma frequency range during card presentation in the orbitofrontal cortex (p=0.0022), and by increased power following bet cue presentation across the theta-to-beta range in the orbitofrontal cortex ( p =0.0022), high-gamma in the anterior cingulate ( p =0.0004), and high-gamma in the insula ( p =0.0014). Risk averse decisions were predicted by decreased orbitofrontal cortex gamma power ( p =2.0E-4). Optimized decisions that maximized earnings were preceded by decreases within the theta to beta range in orbitofrontal cortex ( p =2.0E-4), broad frequencies in amygdala ( p =2.0E-4), and theta to low-gamma in insula ( p =4.0E-4). Insula risky decision power was associated with orbitofrontal cortex high-gamma reward prediction error signal ( p =0.0048) and with patient impulsivity ( p =0.00478). Our findings identify and help characterize reward circuitry activity predictive of risk-taking in humans. These findings may serve as potential biomarkers to inform the development of novel treatment strategies such as closed loop neuromodulation for disorders of risk taking.

3.
Stereotact Funct Neurosurg ; : 1-17, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38513625

RESUMO

INTRODUCTION: Despite the known benefits of deep brain stimulation (DBS), the cost of the procedure can limit access and can vary widely. Our aim was to conduct a systematic review of the reported costs associated with DBS, as well as the variability in reporting cost-associated factors to ultimately increase patient access to this therapy. METHODS: A systematic review of the literature for cost of DBS treatment was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed and Embase databases were queried. Olsen & Associates (OANDA) was used to convert all reported rates to USD. Cost was corrected for inflation using the US Bureau of Labor Statistics Inflation Calculator, correcting to April 2022. RESULTS: Twenty-six articles on the cost of DBS surgery from 2001 to 2021 were included. The median number of patients across studies was 193, the mean reported age was 60.5 ± 5.6 years, and median female prevalence was 38.9%. The inflation- and currency-adjusted mean cost of the DBS device was USD 21,496.07 ± USD 8,944.16, the cost of surgery alone was USD 14,685.22 ± USD 8,479.66, the total cost of surgery was USD 40,942.85 ± USD 17,987.43, and the total cost of treatment until 1 year of follow-up was USD 47,632.27 ± USD 23,067.08. There were no differences in costs observed across surgical indication or country. CONCLUSION: Our report describes the large variation in DBS costs and the manner of reporting costs. The current lack of standardization impedes productive discourse as comparisons are hindered by both geographic and chronological variations. Emphasis should be put on standardized reporting and analysis of reimbursement costs to better assess the variability of DBS-associated costs in order to make this procedure more cost-effective and address areas for improvement to increase patient access to DBS.

4.
J Neurosurg ; : 1-11, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335523

RESUMO

OBJECTIVE: Subthalamic nucleus (STN) and globus pallidus internus (GPI) deep brain stimulation (DBS) effectively treat motor symptoms in Parkinson's disease (PD) but may be associated with cognitive and psychiatric changes in some patients. Evaluation of changes in cognitive and psychiatric symptoms following DBS is complicated by changes in these symptoms that occur as part of the natural disease course. The aim of this study was to evaluate whether electrode position was associated with changes in neurocognitive symptoms in patients who underwent STN and GPI DBS. METHODS: A single-institution retrospective cohort study was conducted on patients with PD who underwent DBS from 2008 to 2019. Cognitive and psychiatric outcomes included Beck Depression Inventory II (BDI-II) score, presence of impulsive-compulsive behavior (ICB), Mini-Mental State Examination (MMSE) score, and overall cognitive status grade determined by comprehensive neuropsychology testing (normal, mild impairment, moderate impairment, and dementia). Pre- and postoperative comparisons were performed using a Wilcoxon signed-rank test or paired t-test. Patients with and without cognitive decline were compared using a Mann-Whitney U-test or unpaired t-test. A chi-square test was used for categorical comparisons. RESULTS: One hundred thirty patients were included (mean age 62.5 ± 7.9 years). At a mean postoperative follow-up from DBS of 13.0 ± 12.7 (range 6-66) months, there was an improvement in ICB (26.3% preoperatively vs 15.0% postoperatively, p = 0.017), but a decline in MMSE score (28.6 ± 1.6 vs 27.6 ± 2.0, p < 0.001) and overall cognitive status (normal: 66.2% vs 39.2%; mild: 12.3% vs 17.7%; moderate: 21.5% vs 33.1%; dementia: 0.0% vs 10.0%; p < 0.001). Patients undergoing STN DBS had a worse decline in overall cognitive status than patients who underwent GPI DBS (p = 0.006). Postoperative cognitive decline was associated with a more medial electrode position only for patients who underwent STN DBS. CONCLUSIONS: Cognitive change was observed in some patients with PD who underwent both GPI and STN DBS, likely due partly to underlying disease progression. Compared with GPI DBS, STN DBS was associated with a greater likelihood of cognitive decline. In STN but not GPI DBS, cognitive decline was associated with medialized electrode position, suggesting modulation of nonmotor STN divisions may contribute to cognitive changes following STN DBS.

5.
iScience ; 27(3): 109130, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38380249

RESUMO

Oscillatory activity in the local field potential (LFP) is thought to be a marker of cognitive processes. To understand how it differentiates tasks and brain areas in humans, we recorded LFPs in 15 adults with intracranial depth electrodes, as they performed visual-spatial and shape working memory tasks. Stimulus appearance produced widespread, broad-band activation, including in occipital, parietal, temporal, insular, and prefrontal cortex, and the amygdala and hippocampus. Occipital cortex was characterized by most elevated power in the high-gamma (100-150 Hz) range during the visual stimulus presentation. The most consistent feature of the delay period was a systematic pattern of modulation in the beta frequency (16-40 Hz), which included a decrease in power of variable timing across areas, and rebound during the delay period. These results reveal the widespread nature of oscillatory activity across a broad brain network and region-specific signatures of oscillatory processes associated with visual working memory.

6.
Epilepsia ; 65(3): 675-686, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38240699

RESUMO

OBJECTIVE: To understand the potential behavioral and cognitive effects of mesial temporal resection for temporal lobe epilepsy (TLE) a method is required to characterize network-wide functional alterations caused by a discrete structural disconnection. The objective of this study was to investigate network-wide alterations in brain dynamics of patients with TLE before and after surgical resection of the seizure focus using average regional controllability (ARC), a measure of the ability of a node to influence network dynamics. METHODS: Diffusion-weighted imaging (DWI) data were acquired in 27 patients with drug-resistant unilateral mesial TLE who underwent selective amygdalohippocampectomy. Imaging data were acquired before and after surgery and a presurgical and postsurgical structural connectome was generated from whole-brain tractography. Edge-wise strength, node strength, and node ARC were compared before and after surgery. Direct and indirect edge-wise strength changes were identified using patient-specific simulated resections. Direct edges were defined as primary edges disconnected by the resection zone itself. Indirect edges were secondary measured edge strength changes. Changes in node strength and ARC were then related to both direct and indirect edge changes. RESULTS: We found nodes with significant postsurgical changes in both node strength and ARC surrounding the resection zone (paired t tests, p < .05, Bonferroni corrected). ARC identified additional postsurgical changes in nodes outside of the resection zone within the ipsilateral occipital lobe, which were associated with indirect edge-wise strength changes of the postsurgical network (Fisher's exact test, p < .001). These indirect edge-wise changes were facilitated through the "hub" nodes including the thalamus, putamen, insula, and precuneus. SIGNIFICANCE: Discrete network disconnection from TLE resection results in widespread structural and functional changes not predicted by disconnection alone. These can be well characterized by dynamic controllability measures such as ARC and may be useful for investigating changes in brain function that may contribute to seizure recurrence and behavioral or cognitive changes after surgery.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Imageamento por Ressonância Magnética/métodos , Resultado do Tratamento , Encéfalo , Convulsões , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia
7.
World Neurosurg ; 183: e549-e555, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171479

RESUMO

OBJECTIVE: Cerebrospinal fluid shunt placement is associated with high rates of infection. Multiple standardized protocols, particularly in pediatric populations, have been proposed to mitigate this infection rate. We sought to determine the effectiveness of a standardized shunt infection protocol in a large adult population. METHODS: A retrospective cohort study of adults presenting for primary cerebrospinal fluid shunt placement from 2012 to 2022. The primary outcome of interest was shunt infection. The primary exposure of interest was implementation of the shunt protocol (began October 2015). Secondary exposures of interest included use and type of perioperative antibiotics and total operating room time. RESULTS: In total, 820 patients were included, 140 before protocol implementation and 680 after protocol implementation. The overall number of infections over the study period was 15 (1.8% infection rate), with 8 infections preprotocol (5.7%) and 7 infections during the protocol period (1.0%). The infection protocol was associated with a decreased infection rate (odds rato [OR] 0.18, 95% confidence interval [CI] 0.05-0.58, P = 0.002). Total operating room time (OR 1.38 per 30-minute increase, 95% CI 1.05-1.81, P = 0.021) was associated with increased infection rate. Patients who received antibiotics with primarily gram-positive coverage (cefazolin or equivalent) did not have significantly different odds of shunt infection as patients who received broad-spectrum coverage (OR 2.10, 95% CI 0.56-7.88, P = 0.274). CONCLUSIONS: The implementation of an evidence-based perioperative shunt infection protocol is an effective method to decrease shunt infections. Broad-spectrum perioperative antibiotics may not have greater efficacy than gram-positive only coverage, but more research is required.


Assuntos
Hidrocefalia , Criança , Adulto , Humanos , Lactente , Estudos Retrospectivos , Hidrocefalia/cirurgia , Derivações do Líquido Cefalorraquidiano/métodos , Antibacterianos/uso terapêutico , Reoperação
9.
Neurosurg Clin N Am ; 35(1): 61-72, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000842

RESUMO

Epilepsy surgery is a potentially curative treatment of drug-resistant epilepsy that has remained underutilized both due to inadequate referrals and incomplete localization hypotheses. The complexity of patients evaluated for epilepsy surgery has increased, thus new approaches are necessary to treat these patients. The paradigm of epilepsy surgery has evolved to match this challenge, now considering the entire seizure network with the goal of disrupting it through resection, ablation, neuromodulation, or a combination. The network paradigm has the potential to aid in identification of the seizure network as well as treatment selection.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Eletroencefalografia/métodos , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Convulsões/cirurgia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Mapeamento Encefálico/métodos , Técnicas Estereotáxicas , Resultado do Tratamento
10.
Epilepsy Curr ; 23(4): 217-219, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662463
11.
bioRxiv ; 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37732263

RESUMO

Oscillatory activity is thought to be a marker of cognitive processes, although its role and distribution across the brain during working memory has been a matter of debate. To understand how oscillatory activity differentiates tasks and brain areas in humans, we recorded local field potentials (LFPs) in 12 adults as they performed visual-spatial and shape-matching memory tasks. Tasks were designed to engage working memory processes at a range of delay intervals between stimulus delivery and response initiation. LFPs were recorded using intracranial depth electrodes implanted to localize seizures for management of intractable epilepsy. Task-related LFP power analyses revealed an extensive network of cortical regions that were activated during the presentation of visual stimuli and during their maintenance in working memory, including occipital, parietal, temporal, insular, and prefrontal cortical areas, and subcortical structures including the amygdala and hippocampus. Across most brain areas, the appearance of a stimulus produced broadband power increase, while gamma power was evident during the delay interval of the working memory task. Notable differences between areas included that occipital cortex was characterized by elevated power in the high gamma (100-150 Hz) range during the 500 ms of visual stimulus presentation, which was less pronounced or absent in other areas. A decrease in power centered in beta frequency (16-40 Hz) was also observed after the stimulus presentation, whose magnitude differed across areas. These results reveal the interplay of oscillatory activity across a broad network, and region-specific signatures of oscillatory processes associated with visual working memory.

12.
J Neurol Neurosurg Psychiatry ; 95(1): 86-96, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37679029

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is commonly performed with patients awake to perform intraoperative microelectrode recordings and/or macrostimulation testing to guide final electrode placement. Supplemental information from atlas-based databases derived from prior patient data and visualised as efficacy heat maps transformed and overlaid onto preoperative MRIs can be used to guide preoperative target planning and intraoperative final positioning. Our quantitative analysis of intraoperative testing and corresponding changes made to final electrode positioning aims to highlight the value of intraoperative neurophysiological testing paired with image-based data to optimise final electrode positioning in a large patient cohort. METHODS: Data from 451 patients with movement disorders treated with 822 individual DBS leads at a single institution from 2011 to 2021 were included. Atlas-based data was used to guide surgical targeting. Intraoperative testing data and coordinate data were retrospectively obtained from a large patient database. Medical records were reviewed to obtain active contact usage and neurologist-defined outcomes at 1 year. RESULTS: Microelectrode recording firing profiles differ per track, per target and inform the locations where macrostimulation testing is performed. Macrostimulation performance correlates with the final electrode track chosen. Centroids of atlas-based efficacy heat maps per target were close in proximity to and may predict active contact usage at 1 year. Overall, patient outcomes at 1 year were improved for patients with better macrostimulation response. CONCLUSIONS: Atlas-based imaging data is beneficial for target planning and intraoperative guidance, and in conjunction with intraoperative neurophysiological testing during awake DBS can be used to individualize and optimise final electrode positioning, resulting in favourable outcomes.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Estimulação Encefálica Profunda/métodos , Estudos Retrospectivos , Vigília , Doença de Parkinson/cirurgia , Imageamento por Ressonância Magnética , Microeletrodos , Eletrodos Implantados
13.
J Clin Neurosci ; 115: 121-128, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37549435

RESUMO

BACKGROUND: Essential tremor (ET) and Parkinson's disease (PD) are the most common tremor disorders and are common indications for deep brain stimulation (DBS). In some patients, PD and ET symptoms overlap and diagnosis can be challenging based on clinical criteria alone. The objective of this study was to identify structural brain differences between PD and ET DBS patients to help differentiate these disorders and improve our understanding of the different brain regions involved in these pathologic processes. METHODS: We included ET and PD patients scheduled to undergo DBS surgery in this observational study. Patients underwent 3T brain MRI while under general anesthesia as part of their procedure. Cortical thicknesses and subcortical volumes were quantified from T1-weighted images using automated multi-atlas segmentation. We used logistic regression analysis to identify brain regions associated with diagnosis of ET or PD. RESULTS: 149 ET and 265 PD patients were included. Smaller volumes in the pallidum and thalamus and reduced thickness in the anterior orbital gyrus, lateral orbital gyrus, and medial precentral gyrus were associated with greater odds of ET diagnosis. Conversely, reduced volumes in the caudate, amygdala, putamen, and basal forebrain, and reduced thickness in the orbital part of the inferior frontal gyrus, supramarginal gyrus, and posterior cingulate were associated with greater odds of PD diagnosis. CONCLUSIONS: These findings identify structural brain differences between PD and ET patients. These results expand our understanding of the different brain regions involved in these disorders and suggest that structural MRI may help to differentiate patients with these two disorders.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/terapia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Tremor/diagnóstico
14.
Magn Reson Imaging ; 103: 18-27, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37400042

RESUMO

Functional magnetic resonance images (fMRI) acquired using echo planar sequences typically suffer from spatial distortions due to susceptibility induced off-resonance fields, which may cause geometric mismatch with structural images and affect subsequent quantification and localization of brain function. State-of-the art distortion correction methods (for example, using FSL's topup or AFNI's 3dQwarp algorithms) require the collection of additional scans - either field maps or images with reverse phase encoding directions (i.e., blip-up/blip-down acquisitions) - to estimate and correct distortions. However, not all imaging protocols acquire these additional data and thus cannot take advantage of these post-acquisition corrections. In this study, we aim to enable state-of-the art processing of historical or limited datasets that do not include specific sequences for distortion correction by using only the acquired functional data and a single commonly acquired structural image. To achieve this, we synthesize an undistorted image with contrast similar to the fMRI data and use the non-distorted synthetic image as an anatomical target for distortion correction. We evaluate the efficacy of this approach, named SynBOLD-DisCo (Synthetic BOLD contrast for Distortion Correction), and show that this distortion correction process yields fMRI data that are geometrically similar to non-distorted structural images, with distortion correction virtually equivalent to acquisitions that do contain both blip-up/blip-down images. Our method is available as a Singularity container, source code, and an executable trained model to facilitate evaluation and integration into existing fMRI preprocessing pipelines.


Assuntos
Imagem Ecoplanar , Processamento de Imagem Assistida por Computador , Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Artefatos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Encéfalo/diagnóstico por imagem
15.
J Neurosurg ; 139(6): 1796-1801, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37410635
16.
Artigo em Inglês | MEDLINE | ID: mdl-37465092

RESUMO

The blood oxygen level dependent (BOLD) signal from functional magnetic resonance imaging (fMRI) is a noninvasive technique that has been widely used in research to study brain function. However, fMRI suffers from susceptibility-induced off resonance fields which may cause geometric distortions and mismatches with anatomical images. State-of-the-art correction methods require acquiring reverse phase encoded images or additional field maps to enable distortion correction. However, not all imaging protocols include these additional scans and thus cannot take advantage of these susceptibility correction capabilities. As such, in this study we aim to enable state-of-the-art distortion correction with FSL's topup algorithm of historical and/or limited fMRI data that include only a structural image and single phase encoded fMRI. To do this, we use 3D U-net models to synthesize undistorted fMRI BOLD contrast images from the structural image and use this undistorted synthetic image as an anatomical target for distortion correction with topup. We evaluate the efficacy of this approach, named SynBOLD-DisCo (synthetic BOLD images for distortion correction), and show that BOLD images corrected using our approach are geometrically more similar to structural images than the distorted BOLD data and are practically equivalent to state-of-the-art correction methods which require reverse phase encoded data. Future directions include additional validation studies, integration with other preprocessing operations, retraining with broader pathologies, and investigating the effects of spin echo versus gradient echo images for training and distortion correction. In summary, we demonstrate SynBOLD-DisCo corrects distortion of fMRI when reverse phase encoding scans or field maps are not available.

17.
J Neurol Neurosurg Psychiatry ; 94(11): 879-886, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37336643

RESUMO

BACKGROUND: Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) is a minimally invasive alternative to surgical resection for drug-resistant mesial temporal lobe epilepsy (mTLE). Reported rates of seizure freedom are variable and long-term durability is largely unproven. Anterior temporal lobectomy (ATL) remains an option for patients with MRgLITT treatment failure. However, the safety and efficacy of this staged strategy is unknown. METHODS: This multicentre, retrospective cohort study included 268 patients consecutively treated with mesial temporal MRgLITT at 11 centres between 2012 and 2018. Seizure outcomes and complications of MRgLITT and any subsequent surgery are reported. Predictive value of preoperative variables for seizure outcome was assessed. RESULTS: Engel I seizure freedom was achieved in 55.8% (149/267) at 1 year, 52.5% (126/240) at 2 years and 49.3% (132/268) at the last follow-up ≥1 year (median 47 months). Engel I or II outcomes were achieved in 74.2% (198/267) at 1 year, 75.0% (180/240) at 2 years and 66.0% (177/268) at the last follow-up. Preoperative focal to bilateral tonic-clonic seizures were independently associated with seizure recurrence. Among patients with seizure recurrence, 14/21 (66.7%) became seizure-free after subsequent ATL and 5/10 (50%) after repeat MRgLITT at last follow-up≥1 year. CONCLUSIONS: MRgLITT is a viable treatment with durable outcomes for patients with drug-resistant mTLE evaluated at a comprehensive epilepsy centre. Although seizure freedom rates were lower than reported with ATL, this series represents the early experience of each centre and a heterogeneous cohort. ATL remains a safe and effective treatment for well-selected patients who fail MRgLITT.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Epilepsia , Terapia a Laser , Humanos , Epilepsia do Lobo Temporal/cirurgia , Estudos Retrospectivos , Convulsões/cirurgia , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia/cirurgia , Resultado do Tratamento , Imageamento por Ressonância Magnética , Lasers
18.
Epilepsy Curr ; 23(3): 150-152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334412
19.
Brain Sci ; 13(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37371395

RESUMO

Acetylcholine is a critical modulatory neurotransmitter for cognitive function. Cholinergic drugs improve cognitive performance and enhance neuronal activity in the sensory and association cortices. An alternative means of improving cognitive function is through the use of deep brain stimulation. Prior animal studies have demonstrated that stimulation of the nucleus basalis of Meynert through DBS improves cognitive performance on a visual working memory task to the same degree as cholinesterase inhibitors. Additionally, unlike current pharmacological treatments for neurocognitive disorders, DBS does not lose efficacy over time and adverse effects are rare. These findings suggest that DBS may be a promising alternative for treating cognitive impairments in neurodegenerative disorders such as Alzheimer's disease. Thus, further research and human trials should be considered to assess the potential of DBS as a therapeutic treatment for these disorders.

20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA