Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Rev Immunol ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862638

RESUMO

Malaria, caused by infection with Plasmodium parasites, drives multiple regulatory responses across the immune landscape. These regulatory responses help to protect against inflammatory disease but may in some situations hamper the acquisition of adaptive immune responses that clear parasites. In addition, the regulatory responses that occur during Plasmodium infection may negatively affect malaria vaccine efficacy in the most at-risk populations. Here, we discuss the specific cellular mechanisms of immunoregulatory networks that develop during malaria, with a focus on knowledge gained from human studies and studies that involve the main malaria parasite to affect humans, Plasmodium falciparum. Leveraging this knowledge may lead to the development of new therapeutic approaches to increase protective immunity to malaria during infection or after vaccination.

2.
PLoS Negl Trop Dis ; 18(4): e0012112, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38669292

RESUMO

Visceral leishmaniasis (VL) is a potentially fatal parasitic infection caused by Leishmania donovani in India. L. donovani is an obligate intracellular protozoan residing mostly in macrophages of the reticuloendothelial system throughout chronic infection. Monocytic phagocytes are critical in the pathogenesis of different forms of leishmaniasis. Subsets of monocytes are distinguished by their surface markers into CD14+CD16- classical monocytes, CD14+CD16+ intermediate monocytes, and CD16++CD14low non-classical monocyte subsets. During cutaneous leishmaniasis (CL), intermediate monocyte are reported to be a source of inflammatory cytokines IL-1ß and TNF, and they express CCR2 attracting them to sites of inflammatory pathology. We examined monocyte subsets in the blood and bone marrow of patients with VL from an endemic site in Bihar, India, and found these contrasted with the roles of monocytes in CL. During VL, intermediate and non-classical CD16+ monocyte subsets expressed instead a non-inflammatory phenotype with low CCR2, high CX3CR1 and low microbicidal oxidant generation, making them more similar to patrolling monocytes than inflammatory cells. Bone marrow CD16+ monocyte subsets expressed a phenotype that might be more similar to the inflammatory subsets of CL, although our inability to obtain bone marrow from healthy donors in the endemic region hampered this interpretation Overall the data suggest that CD16+ intermediate monocyte subsets in VL patients express a phenotypes that contributes to an immunosuppressed pathologic immune state, but in contrast to CL, these do not mediate localized inflammatory responses.


Assuntos
Medula Óssea , Leishmaniose Visceral , Monócitos , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Humanos , Monócitos/imunologia , Índia , Adulto , Masculino , Medula Óssea/parasitologia , Feminino , Receptores de IgG/análise , Receptores de IgG/metabolismo , Leishmania donovani/imunologia , Leishmania donovani/fisiologia , Adulto Jovem , Adolescente , Receptores CCR2/metabolismo , Pessoa de Meia-Idade , Criança , Receptores de Quimiocinas/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Citocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA