Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Syst Biol ; 14(1): e7803, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335276

RESUMO

More and more natural DNA variants are being linked to physiological traits. Yet, understanding what differences they make on molecular regulations remains challenging. Important properties of gene regulatory networks can be captured by computational models. If model parameters can be "personalized" according to the genotype, their variation may then reveal how DNA variants operate in the network. Here, we combined experiments and computations to visualize natural alleles of the yeast GAL3 gene in a space of model parameters describing the galactose response network. Alleles altering the activation of Gal3p by galactose were discriminated from those affecting its activity (production/degradation or efficiency of the activated protein). The approach allowed us to correctly predict that a non-synonymous SNP would change the binding affinity of Gal3p with the Gal80p transcriptional repressor. Our results illustrate how personalizing gene regulatory models can be used for the mechanistic interpretation of genetic variants.


Assuntos
Polimorfismo de Nucleotídeo Único , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Alelos , Sítios de Ligação , Galactose/farmacologia , Regulação Fúngica da Expressão Gênica , Modelos Genéticos , Modelos Moleculares , Ligação Proteica , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
2.
Trends Cell Biol ; 26(7): 511-525, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27198635

RESUMO

Polycomb group (PcG) proteins dynamically define cellular identities through the epigenetic repression of key developmental regulatory genes. PcG proteins are recruited to specific regulatory elements to modify the chromatin surrounding them. In addition, they regulate the organization of their target genes in the 3D space of the nucleus, and this regulatory function of the 3D genome architecture is involved in cell differentiation and the maintenance of cellular memory. In this review we discuss recent advances in our understanding of how PcG proteins are recruited to chromatin to induce local and global changes in chromosome conformation and regulate their target genes.


Assuntos
Genoma , Proteínas do Grupo Polycomb/metabolismo , Animais , Cromatina/metabolismo , Epigênese Genética , Humanos , Modelos Biológicos , Proteínas do Grupo Polycomb/química
3.
Cell Rep ; 9(1): 219-233, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25284790

RESUMO

Metazoan genomes are partitioned into modular chromosomal domains containing active or repressive chromatin. In flies, Polycomb group (PcG) response elements (PREs) recruit PHO and other DNA-binding factors and act as nucleation sites for the formation of Polycomb repressive domains. The sequence specificity of PREs is not well understood. Here, we use comparative epigenomics and transgenic assays to show that Drosophila domain organization and PRE specification are evolutionarily conserved despite significant cis-element divergence within Polycomb domains, whereas cis-element evolution is strongly correlated with transcription factor binding divergence outside of Polycomb domains. Cooperative interactions of PcG complexes and their recruiting factor PHO stabilize PHO recruitment to low-specificity sequences. Consistently, PHO recruitment to sites within Polycomb domains is stabilized by PRC1. These data suggest that cooperative rather than hierarchical interactions among low-affinity sequences, DNA-binding factors, and the Polycomb machinery are giving rise to specific and strongly conserved 3D structures in Drosophila.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Animais , Ligação Proteica , Fatores de Transcrição/metabolismo
4.
Virologie (Montrouge) ; 16(6): 356-370, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31910554

RESUMO

Innate immunity plays a critical role in the host response to a viral infection. In particular, type I interferons (IFN-I) are major effectors of antiviral innate immunity. Herein, interplays between HTLV-1 and the IFN-I response are reviewed. Particular emphasis is put on virus sensing by innate immunity receptors and on anti-HTLV-1 effects of IFN-I. We also discuss HTLV-1-induced alteration of IFN-I function and how IFN-I/AZT treatment of adult T-cell leukemia/lymphoma patients can lead to complete remission despite virus-induced escape mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA