Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684705

RESUMO

The endurance characteristic of Zr-doped HfO2 (HZO)-based metal-ferroelectric-metal (MFM) capacitors fabricated under various deposition/annealing temperatures in the atomic layer deposition (ALD) process was investigated. The chamber temperature in the ALD process was set to 120 °C, 200 °C, or 250 °C, and the annealing temperature was set to 400 °C, 500 °C, 600 °C, or 700 °C. For the given annealing temperature of 700 °C, the remnant polarization (2Pr) was 17.21 µC/cm2, 26.37 µC/cm2, and 31.8 µC/cm2 at the chamber temperatures of 120 °C, 200 °C, and 250 °C, respectively. For the given/identical annealing temperature, the largest remnant polarization (Pr) was achieved when using the chamber temperature of 250 °C. At a higher annealing temperature, the grain size in the HZO layer becomes smaller, and thereby, it enables to boost up Pr. It was observed that the endurance characteristics for the capacitors fabricated under various annealing/chamber temperatures were quite different. The different endurance characteristics are due to the oxygen and oxygen vacancies in ferroelectric films, which affects the wakeup/fatigue behaviors. However, in common, all the capacitors showed no breakdown for an externally applied pulse (up to 108 cycles of the pulse).

2.
ACS Appl Mater Interfaces ; 13(30): 36499-36506, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34310129

RESUMO

HfO2-based ferroelectrics are highly expected to lead the new paradigm of nanoelectronic devices owing to their unexpected ability to enhance ferroelectricity in the ultimate thickness scaling limit (≤2 nm). However, an understanding of its physical origin remains uncertain because its direct microstructural and chemical characterization in such a thickness regime is extremely challenging. Herein, we solve the mystery for the continuous retention of high ferroelectricity in an ultrathin hafnium zirconium oxide (HZO) film (∼2 nm) by unveiling the evolution of microstructures and crystallographic orientations using a combination of state-of-the-art structural analysis techniques beyond analytical limits and theoretical approaches. We demonstrate that the enhancement of ferroelectricity in ultrathin HZO films originates from textured grains with a preferred orientation along an unusual out-of-plane direction of (112). In principle, (112)-oriented grains can exhibit 62% greater net polarization than the randomly oriented grains observed in thicker samples (>4 nm). Our first-principles calculations prove that the hydroxyl adsorption during the deposition process can significantly reduce the surface energy of (112)-oriented films, thereby stabilizing the high-index facet of (112). This work provides new insights into the ultimate scaling of HfO2-based ferroelectrics, which may facilitate the design of future extremely small-scale logic and memory devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA