Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 6: 600, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30693277

RESUMO

Ultra-thin and large-area silicon wafers with a thickness in the range of 20-70 µm, were produced by spalling using a nickel stressor layer. A new equation for predicting the thickness of the spalled silicon was derived from the Suo-Hutchinson mechanical model and the kinking mechanism. To confirm the reliability of the new equation, the proportional factor of stress induced by the nickel on the silicon wafer, was calculated. The calculated proportional factor of λ = 0.99 indicates that the thickness of the spalled silicon wafer is proportional to that of the nickel layer. A similar relationship was observed in the experimental data obtained in this study. In addition, the thickness of the stressor layer was converted to a value of stress as a guide when using other deposition conditions and materials. A silicon wafer with a predicted thickness of 50 µm was exfoliated for further analysis. In order to spall a large-area (150 × 150 mm2 or 6 × 6 in2) silicon wafer without kerf loss, initial cracks were formed by a laser pretreatment at a proper depth (50 µm) inside the exfoliated silicon wafer, which reduced the area of edge slope (kerf loss) from 33 to 3 mm2. The variations in thickness of the spalled wafer remained under 4%. Moreover, we checked the probability of degradation of the spalled wafers by using them to fabricate solar cells; the efficiency and ideality factor of the spalled silicon wafers were found to be 14.23%and 1.35, respectively.

2.
RSC Adv ; 8(52): 29995-30001, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35547312

RESUMO

In this study, the sensing properties of palladium-doped porous silicon (Pd/p-Si) substrates for low-ppm level detection of toxic H2S gas are investigated. A Si substrate with dead-end pores ranging from nano- to macroscale was generated by a combined process of metal-assisted chemical etching (MacE) and electrochemical etching with tuned reaction time, in which nano-Pd catalysts were decorated by E-beam sputtering deposition. The sensing properties of the Pd/p-Si were enhanced as the thickness of the substrate layer increased; along with the resulting variation in surface area, this resulted in superior H2S sensing performances in the low-ppm range (less than 3 ppm), with a detection limit of 300 ppb (sensitivity 30%) at room temperature. Furthermore, the sensor displayed excellent selectivity toward the hazardous H2S molecules in comparison with various other reducing gases, including NO2, CO2, NH3, and H2, showing its potential for application in workplaces or environments affected by other toxic gases. The enhancement in sensing performance was possibly due to the increased dispersion and surface area of Pd nano-catalysts, which led to an increase in chemisorption sites of adsorbate molecules.

3.
Sensors (Basel) ; 17(12)2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29182573

RESUMO

In this study, a graphene-doped porous silicon (G-doped/p-Si) substrate for low ppm H2 gas detection by an inexpensive synthesis route was proposed as a potential noble graphene-based gas sensor material, and to understand the sensing mechanism. The G-doped/p-Si gas sensor was synthesized by a simple capillary force-assisted solution dropping method on p-Si substrates, whose porosity was generated through an electrochemical etching process. G-doped/p-Si was fabricated with various graphene concentrations and exploited as a H2 sensor that was operated at room temperature. The sensing mechanism of the sensor with/without graphene decoration on p-Si was proposed to elucidate the synergetic gas sensing effect that is generated from the interface between the graphene and p-type silicon.

4.
J Nanosci Nanotechnol ; 14(10): 7636-40, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25942840

RESUMO

In this study, CdSe core and CdSe/ZnSe core/shell quantum dots with a narrow size distribution were synthesized in a micro-reactor. A PMMA coating applied to the surface of CdSe/ZnSe core/shell QDs to prevent degradation gave improved dispersion stability compared to the CdSe core and CdSe/ZnSe core/shell. Many previous approaches to dispersion stability have not been quantitatively assessed. The dispersion stability was confirmed by multiple light scattering measurement. Additionally, the PMMA-coated CdSe/ZnSe QDs showed greatly improved optical properties with a photoluminescence quantum yield up to 80%. This structural motif is expected to prevent the degradation of QDs.


Assuntos
Compostos de Cádmio/química , Fenômenos Ópticos , Polimetil Metacrilato/química , Pontos Quânticos/química , Compostos de Selênio/química , Compostos de Zinco/química , Absorção Fisico-Química , Estabilidade de Medicamentos , Microtecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA