Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39066058

RESUMO

Deep learning (DL) models require enormous amounts of data to produce reliable diagnosis results. The superiority of DL models over traditional machine learning (ML) methods in terms of feature extraction, feature dimension reduction, and diagnosis performance has been shown in various studies of fault diagnosis systems. However, data acquisition can sometimes be compromised by sensor issues, resulting in limited data samples. In this study, we propose a novel DL model based on a stacked convolutional autoencoder (SCAE) to address the challenge of limited data. The innovation of the SCAE model lies in its ability to enhance gradient information flow and extract richer hierarchical features, leading to superior diagnostic performance even with limited and noisy data samples. This article describes the development of a fault diagnosis method for a hydraulic piston pump using time-frequency visual pattern recognition. The proposed SCAE model has been evaluated on limited data samples of a hydraulic piston pump. The findings of the experiment demonstrate that the suggested approach can achieve excellent diagnostic performance with over 99.5% accuracy. Additionally, the SCAE model has outperformed traditional DL models such as deep neural networks (DNN), standard stacked sparse autoencoders (SSAE), and convolutional neural networks (CNN) in terms of diagnosis performance. Furthermore, the proposed model demonstrates robust performance under noisy data conditions, further highlighting its effectiveness and reliability.

2.
Plants (Basel) ; 12(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37375941

RESUMO

Indoor hydroponic greenhouses are becoming increasingly popular for sustainable food production. On the other hand, precise control of the climate conditions inside these greenhouses is crucial for the success of the crops. Time series deep learning models are adequate for climate predictions in indoor hydroponic greenhouses, but a comparative analysis of these models at different time intervals is needed. This study evaluated the performance of three commonly used deep learning models for climate prediction in an indoor hydroponic greenhouse: Deep Neural Network, Long-Short Term Memory (LSTM), and 1D Convolutional Neural Network. The performance of these models was compared at four time intervals (1, 5, 10, and 15 min) using a dataset collected over a week at one-minute intervals. The experimental results showed that all three models perform well in predicting the temperature, humidity, and CO2 concentration in a greenhouse. The performance of the models varied at different time intervals, with the LSTM model outperforming the other models at shorter time intervals. Increasing the time interval from 1 to 15 min adversely affected the performance of the models. This study provides insights into the effectiveness of time series deep learning models for climate predictions in indoor hydroponic greenhouses. The results highlight the importance of choosing the appropriate time interval for accurate predictions. These findings can guide the design of intelligent control systems for indoor hydroponic greenhouses and contribute to the advancement of sustainable food production.

3.
Sensors (Basel) ; 22(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35161956

RESUMO

Since artificial intelligence (AI) was introduced into engineering fields, it has made many breakthroughs. Machine learning (ML) algorithms have been very commonly used in structural health monitoring (SHM) systems in the last decade. In this study, a vibration-based early stage of bolt loosening detection and identification technique is proposed using ML algorithms, for a motor fastened with four bolts (M8 × 1.5) to a stationary support. First, several cases with fastened and loosened bolts were established, and the motor was operated in three different types of working condition (800 rpm, 1000 rpm, and 1200 rpm), in order to obtain enough vibration data. Second, for feature extraction of the dataset, the short-time Fourier transform (STFT) method was performed. Third, different types of classifier of ML were trained, and a new test dataset was applied to evaluate the performance of the classifiers. Finally, the classifier with the greatest accuracy was identified. The test results showed that the capability of the classifier was satisfactory for detecting bolt loosening and identifying which bolt or bolts started to lose their preload in each working condition. The identified classifier will be implemented for online monitoring of the early stage of bolt loosening of a multi-bolt structure in future works.


Assuntos
Inteligência Artificial , Vibração , Algoritmos , Análise de Fourier , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA