Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 14(4): 704-714, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30896917

RESUMO

Metabolomics is a widely used technology for obtaining direct measures of metabolic activities from diverse biological systems. However, ambiguous metabolite identifications are a common challenge and biochemical interpretation is often limited by incomplete and inaccurate genome-based predictions of enzyme activities (that is, gene annotations). Metabolite Annotation and Gene Integration (MAGI) generates a metabolite-gene association score using a biochemical reaction network. This is calculated by a method that emphasizes consensus between metabolites and genes via biochemical reactions. To demonstrate the potential of this method, we applied MAGI to integrate sequence data and metabolomics data collected from Streptomyces coelicolor A3(2), an extensively characterized bacterium that produces diverse secondary metabolites. Our findings suggest that coupling metabolomics and genomics data by scoring consensus between the two increases the quality of both metabolite identifications and gene annotations in this organism. MAGI also made biochemical predictions for poorly annotated genes that were consistent with the extensive literature on this important organism. This limited analysis suggests that using metabolomics data has the potential to improve annotations in sequenced organisms and also provides testable hypotheses for specific biochemical functions. MAGI is freely available for academic use both as an online tool at https://magi.nersc.gov and with source code available at https://github.com/biorack/magi .


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metabolômica , Streptomyces coelicolor , Bases de Dados Genéticas , Genoma Bacteriano , Genômica , Anotação de Sequência Molecular , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo
2.
BMC Bioinformatics ; 18(1): 57, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28114881

RESUMO

BACKGROUND: Mixed cultures of different microbial species are increasingly being used to carry out a specific biochemical function in lieu of engineering a single microbe to do the same task. However, knowing how different species' metabolisms will integrate to reach a desired outcome is a difficult problem that has been studied in great detail using steady-state models. However, many biotechnological processes, as well as natural habitats, represent a more dynamic system. Examining how individual species use resources in their growth medium or environment (exometabolomics) over time in batch culture conditions can provide rich phenotypic data that encompasses regulation and transporters, creating an opportunity to integrate the data into a predictive model of resource use by a mixed community. RESULTS: Here we use exometabolomic profiling to examine the time-varying substrate depletion from a mixture of 19 amino acids and glucose by two Pseudomonas and one Bacillus species isolated from ground water. Contrary to studies in model organisms, we found surprisingly few correlations between resource preferences and maximal growth rate or biomass composition. We then modeled patterns of substrate depletion, and used these models to examine if substrate usage preferences and substrate depletion kinetics of individual isolates can be used to predict the metabolism of a co-culture of the isolates. We found that most of the substrates fit the model predictions, except for glucose and histidine, which were depleted more slowly than predicted, and proline, glycine, glutamate, lysine and arginine, which were all consumed significantly faster. CONCLUSIONS: Our results indicate that a significant portion of a model community's overall metabolism can be predicted based on the metabolism of the individuals. Based on the nature of our model, the resources that significantly deviate from the prediction highlight potential metabolic pathways affected by species-species interactions, which when further studied can potentially be used to modulate microbial community structure and/or function.


Assuntos
Meios de Cultura/química , Consórcios Microbianos , Bacillus/metabolismo , Técnicas de Cocultura , Metabolômica , Modelos Teóricos , Filogenia , Pseudomonas/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de RNA , Microbiologia do Solo
3.
PLoS Biol ; 14(3): e1002399, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26959993

RESUMO

Bacterial Microcompartments (BMCs) are proteinaceous organelles that encapsulate critical segments of autotrophic and heterotrophic metabolic pathways; they are functionally diverse and are found across 23 different phyla. The majority of catabolic BMCs (metabolosomes) compartmentalize a common core of enzymes to metabolize compounds via a toxic and/or volatile aldehyde intermediate. The core enzyme phosphotransacylase (PTAC) recycles Coenzyme A and generates an acyl phosphate that can serve as an energy source. The PTAC predominantly associated with metabolosomes (PduL) has no sequence homology to the PTAC ubiquitous among fermentative bacteria (Pta). Here, we report two high-resolution PduL crystal structures with bound substrates. The PduL fold is unrelated to that of Pta; it contains a dimetal active site involved in a catalytic mechanism distinct from that of the housekeeping PTAC. Accordingly, PduL and Pta exemplify functional, but not structural, convergent evolution. The PduL structure, in the context of the catalytic core, completes our understanding of the structural basis of cofactor recycling in the metabolosome lumen.


Assuntos
Estruturas Bacterianas/enzimologia , Coenzima A/metabolismo , Fosfato Acetiltransferase/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Dados de Sequência Molecular , Conformação Proteica , Salmonella enterica
4.
Commun Integr Biol ; 8(3): e1039755, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26478774

RESUMO

Bacterial microcompartments (BMCs) are proteinaceous organelles used by a broad range of bacteria to segregate and optimize metabolic reactions. Their functions are diverse, and can be divided into anabolic (carboxysome) and catabolic (metabolosomes) processes, depending on their cargo enzymes. The assembly pathway for the ß-carboxysome has been characterized, revealing that biogenesis proceeds from the inside out. The enzymes coalesce into a procarboxysome, followed by encapsulation in a protein shell that is recruited to the procarboxysome by a short (∼17 amino acids) extension on the C-terminus of one of the encapsulated proteins. A similar extension is also found on the N- or C-termini of a subset of metabolosome core enzymes. These encapsulation peptides (EPs) are characterized by a primary structure predicted to form an amphipathic α-helix that interacts with shell proteins. Here, we review the features, function and widespread occurrence of EPs among metabolosomes, and propose an expanded role for EPs in the assembly of diverse BMCs.

5.
Appl Environ Microbiol ; 81(24): 8315-29, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26407889

RESUMO

Bacterial microcompartments (BMCs) are proteinaceous organelles encapsulating enzymes that catalyze sequential reactions of metabolic pathways. BMCs are phylogenetically widespread; however, only a few BMCs have been experimentally characterized. Among them are the carboxysomes and the propanediol- and ethanolamine-utilizing microcompartments, which play diverse metabolic and ecological roles. The substrate of a BMC is defined by its signature enzyme. In catabolic BMCs, this enzyme typically generates an aldehyde. Recently, it was shown that the most prevalent signature enzymes encoded by BMC loci are glycyl radical enzymes, yet little is known about the function of these BMCs. Here we characterize the glycyl radical enzyme-associated microcompartment (GRM) loci using a combination of bioinformatic analyses and active-site and structural modeling to show that the GRMs comprise five subtypes. We predict distinct functions for the GRMs, including the degradation of choline, propanediol, and fuculose phosphate. This is the first family of BMCs for which identification of the signature enzyme is insufficient for predicting function. The distinct GRM functions are also reflected in differences in shell composition and apparently different assembly pathways. The GRMs are the counterparts of the vitamin B12-dependent propanediol- and ethanolamine-utilizing BMCs, which are frequently associated with virulence. This study provides a comprehensive foundation for experimental investigations of the diverse roles of GRMs. Understanding this plasticity of function within a single BMC family, including characterization of differences in permeability and assembly, can inform approaches to BMC bioengineering and the design of therapeutics.


Assuntos
Bactérias/enzimologia , Bactérias/metabolismo , Biologia Computacional/métodos , Redes e Vias Metabólicas/genética , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Bactérias/genética , Colina/metabolismo , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Hexosefosfatos/metabolismo , Organelas/metabolismo , Propilenoglicóis/metabolismo
6.
Trends Microbiol ; 23(1): 22-34, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25455419

RESUMO

Bacterial microcompartments (BMCs) are protein-bound organelles predicted to be present across 23 bacterial phyla. BMCs facilitate carbon fixation as well as the aerobic and anaerobic catabolism of a variety of organic compounds. These functions have been linked to ecological nutrient cycling, symbiosis, pathogenesis, and cardiovascular disease. Within bacterial cells, BMCs are metabolic modules that can be further dissociated into their constituent structural and functional protein domains. Viewing BMCs as genetic, structural, functional, and evolutionary modules provides a framework for understanding both BMC-mediated metabolism and for adapting their architectures for applications in synthetic biology.


Assuntos
Bactérias/citologia , Compartimento Celular , Proteínas de Bactérias/química , Conformação Proteica , Engenharia de Proteínas , Biologia Sintética
7.
PLoS Comput Biol ; 10(10): e1003898, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25340524

RESUMO

Bacterial microcompartments (BMCs) are proteinaceous organelles involved in both autotrophic and heterotrophic metabolism. All BMCs share homologous shell proteins but differ in their complement of enzymes; these are typically encoded adjacent to shell protein genes in genetic loci, or operons. To enable the identification and prediction of functional (sub)types of BMCs, we developed LoClass, an algorithm that finds putative BMC loci and inventories, weights, and compares their constituent pfam domains to construct a locus similarity network and predict locus (sub)types. In addition to using LoClass to analyze sequences in the Non-redundant Protein Database, we compared predicted BMC loci found in seven candidate bacterial phyla (six from single-cell genomic studies) to the LoClass taxonomy. Together, these analyses resulted in the identification of 23 different types of BMCs encoded in 30 distinct locus (sub)types found in 23 bacterial phyla. These include the two carboxysome types and a divergent set of metabolosomes, BMCs that share a common catalytic core and process distinct substrates via specific signature enzymes. Furthermore, many Candidate BMCs were found that lack one or more core metabolosome components, including one that is predicted to represent an entirely new paradigm for BMC-associated metabolism, joining the carboxysome and metabolosome. By placing these results in a phylogenetic context, we provide a framework for understanding the horizontal transfer of these loci, a starting point for studies aimed at understanding the evolution of BMCs. This comprehensive taxonomy of BMC loci, based on their constituent protein domains, foregrounds the functional diversity of BMCs and provides a reference for interpreting the role of BMC gene clusters encoded in isolate, single cell, and metagenomic data. Many loci encode ancillary functions such as transporters or genes for cofactor assembly; this expanded vocabulary of BMC-related functions should be useful for design of genetic modules for introducing BMCs in bioengineering applications.


Assuntos
Bactérias , Proteínas de Bactérias , Biologia Computacional/métodos , Redes Reguladoras de Genes , Aldeído Desidrogenase , Algoritmos , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bioengenharia , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiologia , Organelas , Filogenia
8.
Appl Environ Microbiol ; 80(7): 2193-205, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24487526

RESUMO

Bacterial microcompartments (BMCs) are organelles that encapsulate functionally linked enzymes within a proteinaceous shell. The prototypical example is the carboxysome, which functions in carbon fixation in cyanobacteria and some chemoautotrophs. It is increasingly apparent that diverse heterotrophic bacteria contain BMCs that are involved in catabolic reactions, and many of the BMCs are predicted to have novel functions. However, most of these putative organelles have not been experimentally characterized. In this study, we sought to discover the function of a conserved BMC gene cluster encoded in the majority of the sequenced planctomycete genomes. This BMC is especially notable for its relatively simple genetic composition, its remote phylogenetic position relative to characterized BMCs, and its apparent exclusivity to the enigmatic Verrucomicrobia and Planctomycetes. Members of the phylum Planctomycetes are known for their morphological dissimilarity to the rest of the bacterial domain: internal membranes, reproduction by budding, and lack of peptidoglycan. As a result, they are ripe for many discoveries, but currently the tools for genetic studies are very limited. We expanded the genetic toolbox for the planctomycetes and generated directed gene knockouts of BMC-related genes in Planctomyces limnophilus. A metabolic activity screen revealed that BMC gene products are involved in the degradation of a number of plant and algal cell wall sugars. Among these sugars, we confirmed that BMCs are formed and required for growth on l-fucose and l-rhamnose. Our results shed light on the functional diversity of BMCs as well as their ecological role in the planctomycetes, which are commonly associated with algae.


Assuntos
Metabolismo dos Carboidratos , Organelas/metabolismo , Planctomycetales/metabolismo , Plantas/química , Plantas/microbiologia , Fucose/metabolismo , Técnicas de Inativação de Genes , Ordem dos Genes , Genes Bacterianos , Microscopia Eletrônica de Transmissão , Família Multigênica , Organelas/genética , Filogenia , Planctomycetales/genética , Planctomycetales/crescimento & desenvolvimento , Planctomycetales/ultraestrutura , Ramnose/metabolismo
9.
Appl Environ Microbiol ; 78(9): 3298-308, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22327578

RESUMO

The groundwater contaminant 1,4-dioxane (dioxane) is transformed by several monooxygenase-expressing microorganisms, but only a few of these, including Pseudonocardia dioxanivorans strain CB1190, can metabolize the compound as a sole carbon and energy source. However, nothing is yet known about the genetic basis of dioxane metabolism. In this study, we used a microarray to study differential expression of genes in strain CB1190 grown on dioxane, glycolate (a previously identified intermediate of dioxane degradation), or pyruvate. Of eight multicomponent monooxygenase gene clusters carried by the strain CB1190 genome, only the monooxygenase gene cluster located on plasmid pPSED02 was upregulated with dioxane relative to pyruvate. Plasmid-borne genes for putative aldehyde dehydrogenases, an aldehyde reductase, and an alcohol oxidoreductase were also induced during growth with dioxane. With both dioxane and glycolate, a chromosomal gene cluster encoding a putative glycolate oxidase was upregulated, as were chromosomal genes related to glyoxylate metabolism through the glyoxylate carboligase pathway. Glyoxylate carboligase activity in cell extracts from cells pregrown with dioxane and in Rhodococcus jostii strain RHA1 cells expressing the putative strain CB1190 glyoxylate carboligase gene further demonstrated the role of glyoxylate metabolism in the degradation of dioxane. Finally, we used (13)C-labeled dioxane amino acid isotopomer analysis to provide additional evidence that metabolites of dioxane enter central metabolism as three-carbon compounds, likely as phosphoglycerate. The routing of dioxane metabolites via the glyoxylate carboligase pathway helps to explain how dioxane is metabolized as a sole carbon and energy source for strain CB1190.


Assuntos
Actinomycetales/metabolismo , Dioxanos/metabolismo , Glioxilatos/metabolismo , Redes e Vias Metabólicas/genética , Biotransformação , Carbono/metabolismo , Cromossomos Bacterianos , DNA Bacteriano/química , DNA Bacteriano/genética , Metabolismo Energético , Expressão Gênica , Perfilação da Expressão Gênica , Marcação por Isótopo , Metabolismo , Análise em Microsséries , Modelos Biológicos , Dados de Sequência Molecular , Família Multigênica , Plasmídeos , Ácido Pirúvico/metabolismo , Rhodococcus/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA