Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5335, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914563

RESUMO

The NuA3 complex is a major regulator of gene transcription and the cell cycle in yeast. Five core subunits are required for complex assembly and function, but it remains unclear how these subunits interact to form the complex. Here, we report that the Taf14 subunit of the NuA3 complex binds to two other subunits of the complex, Yng1 and Sas3, and describe the molecular mechanism by which the extra-terminal domain of Taf14 recognizes the conserved motif present in Yng1 and Sas3. Structural, biochemical, and mutational analyses show that two motifs are sandwiched between the two extra-terminal domains of Taf14. The head-to-toe dimeric complex enhances the DNA binding activity of Taf14, and the formation of the hetero-dimer involving the motifs of Yng1 and Sas3 is driven by sequence complementarity. In vivo assays in yeast demonstrate that the interactions of Taf14 with both Sas3 and Yng1 are required for proper function of the NuA3 complex in gene transcription and DNA repair. Our findings suggest a potential basis for the assembly of three core subunits of the NuA3 complex, Taf14, Yng1 and Sas3.


Assuntos
Ligação Proteica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIID/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/química , Subunidades Proteicas/metabolismo , Subunidades Proteicas/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/química , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Multimerização Proteica , Modelos Moleculares , Transcrição Gênica , Sequência de Aminoácidos
2.
Anal Biochem ; 663: 115019, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36526022

RESUMO

Ras family GTPases (H/K/N-Ras) modulate numerous effectors, including the lipid kinase PI3K (phosphatidylinositol-3-kinase) that generates growth signal lipid PIP3 (phosphatidylinositol-3,4,5-triphosphate). Active GTP-Ras binds PI3K with high affinity, thereby stimulating PIP3 production. We hypothesize the affinity of this binding interaction could be significantly increased or decreased by Ras mutations at PI3K contact positions, with clinical implications since some Ras mutations at PI3K contact positions are disease-linked. To enable tests of this hypothesis, we have developed an approach combining UV spectral deconvolution, HPLC, and microscale thermophoresis to quantify the KD for binding. The approach measures the total Ras concentration, the fraction of Ras in the active state, and the affinity of active Ras binding to its docking site on PI3K Ras binding domain (RBD) in solution. The approach is illustrated by KD measurements for the binding of active H-Ras and representative mutants, each loaded with GTP or GMPPNP, to PI3Kγ RBD. The findings demonstrate that quantitation of the Ras activation state increases the precision of KD measurements, while also revealing that Ras mutations can increase (Q25L), decrease (D38E, Y40C), or have no effect (G13R) on PI3K binding affinity. Significant Ras affinity changes are predicted to alter PI3K regulation and PIP3 growth signals.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas ras , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas ras/química , Ligação Proteica , Guanosina Trifosfato/metabolismo , Fosfatidilinositóis
3.
Protein Eng Des Sel ; 352022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35325236

RESUMO

Stabilizing antigenic proteins as vaccine immunogens or diagnostic reagents is a stringent case of protein engineering and design as the exterior surface must maintain recognition by receptor(s) and antigen-specific antibodies at multiple distinct epitopes. This is a challenge, as stability enhancing mutations must be focused on the protein core, whereas successful computational stabilization algorithms typically select mutations at solvent-facing positions. In this study, we report the stabilization of SARS-CoV-2 Wuhan Hu-1 Spike receptor binding domain using a combination of deep mutational scanning and computational design, including the FuncLib algorithm. Our most successful design encodes I358F, Y365W, T430I, and I513L receptor binding domain mutations, maintains recognition by the receptor ACE2 and a panel of different anti-receptor binding domain monoclonal antibodies, is between 1 and 2°C more thermally stable than the original receptor binding domain using a thermal shift assay, and is less proteolytically sensitive to chymotrypsin and thermolysin than the original receptor binding domain. Our approach could be applied to the computational stabilization of a wide range of proteins without requiring detailed knowledge of active sites or binding epitopes. We envision that this strategy may be particularly powerful for cases when there are multiple or unknown binding sites.


Assuntos
SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Sítios de Ligação , Glicoproteínas de Membrana/metabolismo , Mutação , Domínios Proteicos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
4.
Mol Cell ; 81(24): 4994-5006.e5, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34919819

RESUMO

PARP1 is a key player in the response to DNA damage and is the target of clinical inhibitors for the treatment of cancers. Binding of PARP1 to damaged DNA leads to activation wherein PARP1 uses NAD+ to add chains of poly(ADP-ribose) onto itself and other nuclear proteins. PARP1 also binds abundantly to intact DNA and chromatin, where it remains enzymatically inactive. We show that intact DNA makes contacts with the PARP1 BRCT domain, which was not previously recognized as a DNA-binding domain. This binding mode does not result in the concomitant reorganization and activation of the catalytic domain. We visualize the BRCT domain bound to nucleosomal DNA by cryogenic electron microscopy and identify a key motif conserved from ancestral BRCT domains for binding phosphates on DNA and phospho-peptides. Finally, we demonstrate that the DNA-binding properties of the BRCT domain contribute to the "monkey-bar mechanism" that mediates DNA transfer of PARP1.


Assuntos
Dano ao DNA , DNA/metabolismo , Nucleossomos/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Animais , Células Cultivadas , DNA/genética , DNA/ultraestrutura , Fibroblastos/enzimologia , Humanos , Camundongos , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Nucleossomos/genética , Nucleossomos/ultraestrutura , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/ultraestrutura , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
5.
bioRxiv ; 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34845448

RESUMO

Stabilizing antigenic proteins as vaccine immunogens or diagnostic reagents is a stringent case of protein engineering and design as the exterior surface must maintain recognition by receptor(s) and antigen-specific antibodies at multiple distinct epitopes. This is a challenge, as stability-enhancing mutations must be focused on the protein core, whereas successful computational stabilization algorithms typically select mutations at solvent-facing positions. In this study we report the stabilization of SARS-CoV-2 Wuhan Hu-1 Spike receptor binding domain (S RBD) using a combination of deep mutational scanning and computational design, including the FuncLib algorithm. Our most successful design encodes I358F, Y365W, T430I, and I513L RBD mutations, maintains recognition by the receptor ACE2 and a panel of different anti-RBD monoclonal antibodies, is between 1-2°C more thermally stable than the original RBD using a thermal shift assay, and is less proteolytically sensitive to chymotrypsin and thermolysin than the original RBD. Our approach could be applied to the computational stabilization of a wide range of proteins without requiring detailed knowledge of active sites or binding epitopes, particularly powerful for cases when there are multiple or unknown binding sites.

6.
Anal Biochem ; 631: 114338, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34433016

RESUMO

The Ras superfamily of small G proteins play central roles in diverse signaling pathways. Superfamily members act as molecular on-off switches defined by their occupancy with GTP or GDP, respectively. In vitro functional studies require loading with a hydrolysis-resistant GTP analogue to increase the on-state lifetime, as well as knowledge of fractional loading with activating and inactivating nucleotides. The present study describes a method combining elements of previous approaches with new, optimized features to analyze the bound nucleotide composition of a G protein loaded with activating (GMPPNP) or inactivating (GDP) nucleotide. After nucleotide loading, the complex is washed to remove unbound nucleotides then bound nucleotides are heat-extracted and subjected to ion-paired, reverse-phase HPLC-UV to resolve, identify and quantify the individual nucleotide components. These data enable back-calculation to the nucleotide composition and fractional activation of the original, washed G protein population prior to heat extraction. The method is highly reproducible. Application to multiple HRas preparations and mutants confirms its ability to fully extract and analyze bound nucleotides, and to resolve the fractional on- and off-state populations. Furthermore, the findings yield a novel hypothesis for the molecular disease mechanism of Ras mutations at the E63 and Y64 positions.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Nucleotídeos de Guanina/análise , Nucleotídeos de Guanina/metabolismo , Proteínas ras/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/metabolismo , Temperatura Alta , Hidrólise , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Raios Ultravioleta , Proteínas ras/genética
7.
Anal Biochem ; 618: 114066, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33485819

RESUMO

The many members of the Ras superfamily are small GTPases that serve as molecular switches. These proteins bind the guanine nucleotides GTP and GDP with picomolar affinities, thereby stabilizing on- and off-signaling states, respectively. Quantitative in vitro Ras studies require accurate determination of total protein, its fractional occupancy with guanine nucleotide, and spectroscopic purity. Yet the high nucleotide affinity of Ras and the overlapping UV spectra of the protein and bound nucleotide make such determinations challenging. Here we describe a generalizable UV spectral deconvolution method to analyze the total protein concentration, total nucleotide stoichiometry, and purity of Ras complexes.


Assuntos
Guanosina Difosfato/química , Guanosina Trifosfato/química , Proteínas ras/química , Humanos , Espectrofotometria Ultravioleta
8.
RNA ; 25(8): 935-947, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31048495

RESUMO

Some neurological disorders, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), fragile X syndrome, Huntington's disease, myotonic dystrophy, and various ataxias, can be caused by expansions of short nucleic acid sequence repeats in specific genes. A possible disease mechanism involves the transcribed repeat RNA binding an RNA-binding protein (RBP), resulting in its sequestration and thus dysfunction. Polycomb repressive complex 2 (PRC2), the histone methyltransferase that deposits the H3K27me3 mark of epigenetically silenced chromatin, binds G-rich RNAs and has especially high affinity for G-quadruplex (G-Q) structures. Here, we find that PRC2 target genes are derepressed and the RNA binding subunit EZH2 largely insoluble in postmortem brain samples from ALS/FTD patients with C9ORF72 (C9) repeat expansions, leading to the hypothesis that the (G4C2)n repeat RNA might be sequestering PRC2. Contrary to this expectation, we found that C9 repeat RNAs (n = 6 or 10) bind weakly to purified PRC2, and studies with the G-Q specific BG4 antibody and circular dichroism studies both indicated that these C9 RNAs have little propensity to form G-Qs in vitro. Several GC-rich triplet-repeat expansion RNAs also have low affinity for PRC2 and do not appreciably form G-Qs in vitro. The results are consistent with these sequences forming hairpin structures that outcompete G-Q folding when the repeat length is sufficiently large. We suggest that binding of PRC2 to these GC-rich RNAs is fundamentally weak but may be modulated in vivo by protein factors that affect secondary structure, such as helicases and other RBPs.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/química , Proteína C9orf72/genética , Demência Frontotemporal/genética , Complexo Repressor Polycomb 2/metabolismo , Repetições de Trinucleotídeos , Esclerose Lateral Amiotrófica/metabolismo , Autopsia , Dicroísmo Circular , Proteína Potenciadora do Homólogo 2 de Zeste/química , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Demência Frontotemporal/metabolismo , Quadruplex G , Humanos , Complexo Repressor Polycomb 2/química , Solubilidade
9.
J Am Chem Soc ; 140(37): 11820-11828, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30203972

RESUMO

A significant challenge for solid tumor treatment is ensuring that a sufficient concentration of therapeutic agent is delivered to the tumor site at doses that can be tolerated by the patient. Biomolecular targeting can bias accumulation in tumors by taking advantage of specific interactions with receptors overexpressed on cancerous cells. However, while antibody-based immunoconjugates show high binding to specific cells, their low dissociation constants ( KD) and large Stokes radii hinder their ability to penetrate deep into tumor tissue, leading to incomplete cell killing and tumor recurrence. To address this, we demonstrate the design and production of a photo-cross-linkable affibody that can form a covalent bond to epidermal growth factor receptor (EGFR) under near UV irradiation. Twelve cysteine mutations were created of an EGFR affibody and conjugated with maleimide-benzophenone. Of these only one exhibited photoconjugation to EGFR, as demonstrated by SDS-PAGE and Western blot. Next this modified affibody was shown to not only bind EGFR expressing cells but also show enhanced retention in a 3D tumor spheroid model, with minimal loss up to 24 h as compared to either unmodified EGFR-binding affibodies or nonbinding, photo-cross-linkable affibodies. Finally, in order to show utility of photo-cross-linking at clinically relevant wavelengths, upconverting nanoparticles (UCNPs) were synthesized that could convert 980 nm light to UV and blue light. In the presence of UCNPs, both direct photoconjugation to EGFR and enhanced retention in tumor spheroids could be obtained using near-infrared illumination. Thus, the photoactive affibodies developed here may be utilized as a platform technology for engineering new therapy conjugates that can penetrate deep into tumor tissue and be retained long enough for effective tumor therapy.


Assuntos
Antineoplásicos/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Neoplasias Mamárias Animais/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/química , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/biossíntese , Receptores ErbB/metabolismo , Feminino , Humanos , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Camundongos , Processos Fotoquímicos , Inibidores de Proteínas Quinases/química , Raios Ultravioleta
10.
Biochemistry ; 53(41): 6539-49, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25238136

RESUMO

Pentachlorophenol (PCP) hydroxylase, the first enzyme in the pathway for degradation of PCP in Sphingobium chlorophenolicum, is an unusually slow flavin-dependent monooxygenase (k(cat) = 0.02 s⁻¹) that converts PCP to a highly reactive product, tetrachlorobenzoquinone (TCBQ). Using stopped-flow spectroscopy, we have shown that the steps up to and including formation of TCBQ are rapid (5-30 s⁻¹). Before products can be released from the active site, the strongly oxidizing TCBQ abstracts an electron from a donor at the active site, possibly a cysteine residue, resulting in an off-pathway diradical state that only slowly reverts to an intermediate capable of completing the catalytic cycle. TCBQ reductase, the second enzyme in the PCP degradation pathway, rescues this nonproductive complex via two fast sequential one-electron transfers. These studies demonstrate how adoption of an ancestral catalytic strategy for conversion of a substrate with different steric and electronic properties can lead to subtle yet (literally) radical changes in enzymatic reaction mechanisms.


Assuntos
Proteínas de Bactérias/metabolismo , Benzoquinonas/metabolismo , Poluentes Ambientais/metabolismo , Hidrocarbonetos Clorados/metabolismo , Hidroquinonas/metabolismo , Oxigenases de Função Mista/metabolismo , Pentaclorofenol/metabolismo , Quinona Redutases/metabolismo , Sphingomonadaceae/enzimologia , Proteínas de Bactérias/química , Benzoquinonas/química , Biocatálise , Biotransformação , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Poluentes Ambientais/química , Hidrocarbonetos Clorados/química , Hidroquinonas/química , Cinética , Oxigenases de Função Mista/química , NADP/metabolismo , Oxirredução , Pentaclorofenol/química , Estabilidade Proteica , Quinona Redutases/química
11.
Nat Struct Mol Biol ; 18(3): 345-51, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21278757

RESUMO

Hsp70 chaperones interact with a wide spectrum of substrates ranging from unfolded to natively folded and aggregated proteins. Structural evidence suggests that bound substrates are entirely enclosed in a ß-sheet cavity covered by a helical lid, which requires structural rearrangements including lid opening to allow substrate access. We analyzed the mechanics of the lid movement of bacterial DnaK by disulfide fixation of lid elements to the ß-sheet and by electron paramagnetic resonance spectroscopy using spin labels in the lid and ß-sheet. Our results indicate that the lid-forming helix B adopts at least three conformational states and, notably, does not close over bound proteins, implying that DnaK does not only bind to extended peptide stretches of protein substrates but can also accommodate regions with substantial tertiary structure. This flexible binding mechanism provides a basis for the broad spectrum of substrate conformers of Hsp70s.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Regulação Alostérica , Dissulfetos/química , Dissulfetos/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico HSP70/genética , Modelos Moleculares , Mutação , Ligação Proteica , Estrutura Secundária de Proteína
12.
Biochemistry ; 50(4): 451-7, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21110513

RESUMO

Fluorescence resonance energy transfer (FRET) is a powerful tool for studying macromolecular assemblies in vitro under near-physiological conditions. Here we present a new type of one-sample FRET (OS-FRET) method employing a novel, nonfluorescent methanethiosulfonate-linked acceptor that can be reversibly coupled to a target sulfhydryl residue via a disulfide bond. After the quenched donor emission is quantitated, the acceptor is removed by reduction, allowing measurement of unquenched donor emission in the same sample. Previous one-sample methods provide distinct advantages in specific FRET applications. The new OS-FRET method is a generalizable spectrochemical approach that can be applied to macromolecular systems lacking essential disulfide bonds and eliminates the potential systematic errors of some earlier one-sample methods. In addition, OS-FRET enables quantitative FRET measurements in virtually any fluorescence spectrometer or detection device. Compared to conventional multisample FRET methods, OS-FRET conserves sample, increases the precision of data, and shortens the time per measurement. The utility of the method is illustrated by its application to a protein complex of known structure formed by CheW and the P4-P5 fragment of CheA, both from Thermotoga maritima. The findings confirm the practicality and advantages of OS-FRET. Anticipated applications of OS-FRET include analysis of macromolecular structure, binding and conformational dynamics, and high-throughput screening for interactions and inhibitors.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Thermotoga maritima/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Quimiotaxia/genética , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência/normas , Substâncias Macromoleculares/antagonistas & inibidores , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas Quimiotáticas Aceptoras de Metil , Mutagênese Sítio-Dirigida , Oxirredução , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Ligação Proteica/genética , Conformação Proteica , Mapeamento de Interação de Proteínas/métodos , Reprodutibilidade dos Testes , Espectrometria de Fluorescência/métodos , Espectrometria de Fluorescência/normas , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
13.
Structure ; 17(9): 1149-51, 2009 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-19748334

RESUMO

Previous evidence has indicated that the transmembrane signal in bacterial chemoeceptors is carried by the piston displacement of a membrane-spanning signaling helix. Hendrickson and coworkers (Cheung and Hendrickson, 2009; Moore and Hendrickson, 2009) now provide structural evidence that suggests piston transmembrane signaling is widely conserved in bacterial receptors that control ubiquitous two-component signaling pathways.


Assuntos
Proteínas de Bactérias/química , Proteínas de Membrana/química , Proteínas de Bactérias/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Membrana/metabolismo , Conformação Proteica , Transdução de Sinais
14.
Biochemistry ; 48(29): 6975-87, 2009 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-19456111

RESUMO

The chemosensory pathway of bacterial chemotaxis forms a polar signaling cluster in which the fundamental signaling units, the ternary complexes, are arrayed in a highly cooperative, repeating lattice. The repeating ternary units are composed of transmembrane receptors, histidine-kinase CheA, and coupling protein CheW, but it is unknown how these three core proteins are interwoven in the assembled ultrasensitive lattice. Here, to further probe the nature of the lattice, we investigate its stability. The findings reveal that once the signaling cluster is assembled, CheA remains associated and active for days in vitro. All three core components are required for this ultrastable CheA binding and for receptor-controlled kinase activity. The stability is disrupted by low ionic strength or high pH, providing strong evidence that electrostatic repulsion between the highly acidic core components can lead to disassembly. We propose that ultrastability arises from the assembled lattice structure that establishes multiple linkages between the core components, thereby conferring thermodynamic or kinetic ultrastability to the bound state. An important, known function of the lattice structure is to facilitate receptor cooperativity, which in turn enhances pathway sensitivity. In the cell, however, the ultrastability of the lattice could lead to uncontrolled growth of the signaling complex until it fills the inner membrane. We hypothesize that such uncontrolled growth is prevented by an unidentified intracellular disassembly system that is lost when complexes are isolated from cells, thereby unmasking the intrinsic complex ultrastability. Possible biological functions of ultrastability are discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Quimiotaxia , Salmonella typhimurium/metabolismo , Transdução de Sinais , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Concentração Osmolar , Eletricidade Estática
15.
FEBS J ; 275(7): 1400-1410, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18279386

RESUMO

Protein degradation in the cytosol of Escherichia coli is carried out by a variety of different proteolytic machines, including ClpAP. The ClpA component is a hexameric AAA+ (ATPase associated with various cellular activities) chaperone that utilizes the energy of ATP to control substrate recognition and unfolding. The precise role of the N-domains of ClpA in this process, however, remains elusive. Here, we have analysed the role of five highly conserved basic residues in the N-domain of ClpA by monitoring the binding, unfolding and degradation of several different substrates, including short unstructured peptides, tagged and untagged proteins. Interestingly, mutation of three of these basic residues within the N-domain of ClpA (H94, R86 and R100) did not alter substrate degradation. In contrast mutation of two conserved arginine residues (R90 and R131), flanking a putative peptide-binding groove within the N-domain of ClpA, specifically compromised the ability of ClpA to unfold and degrade selected substrates but did not prevent substrate recognition, ClpS-mediated substrate delivery or ClpP binding. In contrast, a highly conserved tyrosine residue lining the central pore of the ClpA hexamer was essential for the degradation of all substrate types analysed, including both folded and unstructured proteins. Taken together, these data suggest that ClpA utilizes two structural elements, one in the N-domain and the other in the pore of the hexamer, both of which are required for efficient unfolding of some protein substrates.


Assuntos
Endopeptidase Clp/química , Endopeptidase Clp/fisiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiologia , Chaperonas Moleculares/fisiologia , Dobramento de Proteína , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Arginina/genética , Sequência Conservada , Endopeptidase Clp/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Mutação , Desnaturação Proteica/genética , Estrutura Terciária de Proteína/genética , Especificidade por Substrato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA