Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 87: 110106, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34363951

RESUMO

Monopolar spindle-one binder (MOBs) proteins are evolutionarily conserved and contribute to various cellular signalling pathways. Recently, we reported that hMOB2 functions in preventing the accumulation of endogenous DNA damage and a subsequent p53/p21-dependent G1/S cell cycle arrest in untransformed cells. However, the question of how hMOB2 protects cells from endogenous DNA damage accumulation remained enigmatic. Here, we uncover hMOB2 as a regulator of double-strand break (DSB) repair by homologous recombination (HR). hMOB2 supports the phosphorylation and accumulation of the RAD51 recombinase on resected single-strand DNA (ssDNA) overhangs. Physiologically, hMOB2 expression supports cancer cell survival in response to DSB-inducing anti-cancer compounds. Specifically, loss of hMOB2 renders ovarian and other cancer cells more vulnerable to FDA-approved PARP inhibitors. Reduced MOB2 expression correlates with increased overall survival in patients suffering from ovarian carcinoma. Taken together, our findings suggest that hMOB2 expression may serve as a candidate stratification biomarker of patients for HR-deficiency targeted cancer therapies, such as PARP inhibitor treatments.


Assuntos
Neoplasias , Inibidores de Poli(ADP-Ribose) Polimerases , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Recombinação Homóloga , Humanos , Neoplasias/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA