Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 199: 106620, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38917661

RESUMO

Ongoing warming is leading to the accelerated shrinkage of glaciers located on Arctic islands. Consequently, the influence of glacial meltwater on phytoplankton primary production in Arctic bays becomes critically important in an era of warming. This work studies the spatiotemporal variation of primary production and chlorophyll a concentration in the bays along the eastern coast of the Novaya Zemlya archipelago. Data were collected during nine cruises performed from July to October (2013-2022). The effect of underwater photosynthetically available radiation (PAR) and nutrients on primary production was assessed separately for bays influenced by glacial meltwater (glacial bays) and those without such influence (non-glacial bays). The median value of water column-integrated primary production (IPP) for all bays was 38 mgC m-2 d-1, characterizing them as oligotrophic areas. IPP in non-glacial bays was found to be 2.3-fold and 1.4-fold higher than that in glacial bays during summer and autumn, respectively. Underwater PAR was the main abiotic factor determining IPP during the ice-free period. In the entire bays nutrient concentrations were high, exceeding the limiting values for growth and photosynthesis of phytoplankton. It was concluded that the high turbidity from glacial meltwater runoff leads to decreased underwater PAR and, consequently, to a decline in IPP. This study demonstrates that rapid warming could have a negative impact on the productivity of high Arctic bays and their adjacent areas.


Assuntos
Clorofila A , Monitoramento Ambiental , Camada de Gelo , Fitoplâncton , Regiões Árticas , Clorofila A/análise , Baías , Clorofila/análise , Estações do Ano , Fotossíntese , Água do Mar/química
2.
Biochemistry ; 62(19): 2854-2867, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37694722

RESUMO

Several efforts are currently directed at the creation and cellular implementation of alternative genetic systems composed of pairing components that are orthogonal to the natural dA/dT and dG/dC base pairs. In an alternative approach, Watson-Crick-type pairing is conserved, but one or all of the four letters of the A, C, G, and T alphabet are substituted by modified components. Thus, all four nucleobases were altered to create halogenated deazanucleic acid (DZA): dA was replaced by 7-deaza-2'-deoxyadenosine (dzA), dG by 7-deaza-2'-deoxyguanosine (dzG), dC by 5-fluoro-2'-deoxycytidine (FdC), and dT by 5-chloro-2'-deoxyuridine (CldU). This base-pairing system was previously shown to retain function in Escherichia coli. Here, we analyze the stability, hydration, structure, and dynamics of a DZA Dickerson-Drew Dodecamer (DDD) of sequence 5'-FdC-dzG-FdC-dzG-dzA-dzA-CldU-CldU-FdC-dzG-FdC-dzG-3'. Contrary to similar stabilities of DDD and DZA-DDD, osmotic stressing revealed a dramatic loss of hydration for the DZA-DDD relative to that for the DDD. The parent DDD 5'-d(CGCGAATTCGCG)-3' features an A-tract, a run of adenosines uninterrupted by a TpA step, and exhibits a hallmark narrow minor groove. Crystal structures─in the presence of RNase H─and MD simulations show increased conformational plasticity ("morphing") of DZA-DDD relative to that of the DDD. The narrow dzA-tract minor groove in one structure widens to resemble that in canonical B-DNA in a second structure. These changes reflect an indirect consequence of altered DZA major groove electrostatics (less negatively polarized compared to that in DNA) and hydration (reduced compared to that in DNA). Therefore, chemical modifications outside the minor groove that lead to collapse of major groove electrostatics and hydration can modulate A-tract geometry.


Assuntos
Adenina , DNA , Conformação de Ácido Nucleico , DNA/química , Pareamento de Bases
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122885, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37247552

RESUMO

The phenomenon of fluorescence is widely used in molecular biology for studying the interaction of light with biological objects. In this article, we present an experimental investigation of the enhancement of laser-induced fluorescence of Clytia gregaria green fluorescent protein. The laser-induced fluorescence method applied in our work combines the advantages of femtosecond laser pulses and a photonic crystal cavity, with the time dependence of the fluorescence signal studied. It is shown that a green fluorescent protein solution placed in a microcavity and excited by femtosecond laser pulses leads to an increase in fluorescence on the microcavity modes, which can be estimated by two orders of magnitude. The dependences of fluorescence signal saturation on the average integrated optical pump power are demonstrated and analyzed. The results obtained are of interest for the development of potential applications of biophotonics and extension of convenient methods of laser-induced fluorescence.


Assuntos
Lasers , Fótons , Fluorescência , Proteínas de Fluorescência Verde , Fatores de Tempo
4.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047842

RESUMO

Hydromedusan photoproteins responsible for the bioluminescence of a variety of marine jellyfish and hydroids are a unique biochemical system recognized as a stable enzyme-substrate complex consisting of apoprotein and preoxygenated coelenterazine, which is tightly bound in the protein inner cavity. The binding of calcium ions to the photoprotein molecule is only required to initiate the light emission reaction. Although numerous experimental and theoretical studies on the bioluminescence of these photoproteins were performed, many features of their functioning are yet unclear. In particular, which ionic state of dioxetanone intermediate decomposes to yield a coelenteramide in an excited state and the role of the water molecule residing in a proximity to the N1 atom of 2-hydroperoxycoelenterazine in the bioluminescence reaction are still under discussion. With the aim to elucidate the function of this water molecule as well as to pinpoint the amino acid residues presumably involved in the protonation of the primarily formed dioxetanone anion, we constructed a set of single and double obelin and aequorin mutants with substitutions of His, Trp, Tyr, and Ser to residues with different properties of side chains and investigated their bioluminescence properties (specific activity, bioluminescence spectra, stopped-flow kinetics, and fluorescence spectra of Ca2+-discharged photoproteins). Moreover, we determined the spatial structure of the obelin mutant with a substitution of His64, the key residue of the presumable proton transfer, to Phe. On the ground of the bioluminescence properties of the obelin and aequorin mutants as well as the spatial structures of the obelin mutants with the replacements of His64 and Tyr138, the conclusion was made that, in fact, His residue of the Tyr-His-Trp triad and the water molecule perform the "catalytic function" by transferring the proton from solvent to the dioxetanone anion to generate its neutral ionic state in complex with water, as only the decomposition of this form of dioxetanone can provide the highest light output in the light-emitting reaction of the hydromedusan photoproteins.


Assuntos
Equorina , Prótons , Equorina/genética , Equorina/química , Água , Conformação Proteica , Proteínas Luminescentes/metabolismo , Mutagênese , Cálcio/metabolismo , Medições Luminescentes
5.
Nucleic Acids Res ; 51(4): 1501-1511, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36611237

RESUMO

An enzymatic method has been successfully established enabling the generation of partially base-modified RNA (previously named RZA) constructs, in which all G residues were replaced by isomorphic fluorescent thienoguanosine (thG) analogs, as well as fully modified RZA featuring thG, 5-bromocytosine, 7-deazaadenine and 5-chlorouracil. The transcriptional efficiency of emissive fully modified RZA was found to benefit from the use of various T7 RNA polymerase variants. Moreover, dthG could be incorporated into PCR products by Taq DNA polymerase together with the other three base-modified nucleotides. Notably, the obtained RNA products containing thG as well as thG together with 5-bromocytosine could function as effectively as natural sgRNAs in an in vitro CRISPR-Cas9 cleavage assay. N1-Methylpseudouridine was also demonstrated to be a faithful non-canonical substitute of uridine to direct Cas9 nuclease cleavage when incorporated in sgRNA. The Cas9 inactivation by 7-deazapurines indicated the importance of the 7-nitrogen atom of purines in both sgRNA and PAM site for achieving efficient Cas9 cleavage. Additional aspects of this study are discussed in relation to the significance of sgRNA-protein and PAM--protein interactions that were not highlighted by the Cas9-sgRNA-DNA complex crystal structure. These findings could expand the impact and therapeutic value of CRISPR-Cas9 and other RNA-based technologies.


With the advent of CRISPR-Cas9 gene editing, we now have to hand a simple two-component system amendable to silencing and knock-in editing effectively any gene. Yet we must not forget that the implications of immunotoxicity along with the poor stability and specificity of canonical nucleic acids hold enormous challenges for in vivo applications, especially in gene therapy. Our study endorses the feasibility of the enzymatic approach to incorporate nucleobase modifications into the CRISPR-Cas9 system unveiling the tolerance of Cas9 to N1-methylpseudouridine (m1Ψ)- and emissive thienoguanosine (thG)-modified sgRNA as well as thus far uncharted structural requirements for ensuring proper PAM recognition.


Assuntos
Sistemas CRISPR-Cas , Ácidos Nucleicos , DNA , Edição de Genes/métodos , RNA/química , Fluorescência , Guanosina/química
6.
Sci Rep ; 12(1): 19613, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379962

RESUMO

Coelenterazine-v (CTZ-v), a synthetic vinylene-bridged π-extended derivative, is able to significantly alter bioluminescence spectra of different CTZ-dependent luciferases and photoproteins by shifting them towards longer wavelengths. However, Ca2+-regulated photoproteins activated with CTZ-v display very low bioluminescence activities that hampers its usage as a substrate of photoprotein bioluminescence. Here, we report the crystal structure of semi-synthetic Ca2+-discharged obelin-v bound with the reaction product determined at 2.1 Å resolution. Comparison of the crystal structure of Ca2+-discharged obelin-v with those of other obelins before and after bioluminescence reaction reveals no considerable changes in the overall structure. However, the drastic changes in CTZ-binding cavity are observed owing to the completely different reaction product, coelenteramine-v (CTM-v). Since CTM-v is certainly the main product of obelin-v bioluminescence and is considered to be a product of the "dark" pathway of dioxetanone intermediate decomposition, it explains the low bioluminescence activity of obelin and apparently of other photoproteins with CTZ-v.


Assuntos
Cálcio da Dieta , Cálcio , Cálcio/metabolismo , Conformação Proteica , Proteínas Luminescentes/metabolismo , Medições Luminescentes
7.
Chembiochem ; 23(11): e202200060, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35322918

RESUMO

Chemically modified nucleic acids are of utmost interest in synthetic biology for creating a regulable and sophisticated synthetic system with tailor-made properties. Implanting chemically modified nucleic acids in microorganisms might serve biotechnological applications, while using them in human cells might lead to new advanced medicines. Previously, we reported that a fully modified DNA sequence (called DZA) composed of the four base-modified nucleotides - 7-deaza-adenine, 5-chlorouracil, 7-deaza-guanine and 5-fluorocytosine - could function as a genetic template in prokaryotic cells, Escherichia coli. Here, we report the synthesis of long, partially, or fully modified DZA fragments that encode the yeast-enhanced red fluorescent protein (yEmRFP). The DZA sequences were directly introduced in the genome of the eukaryotic cells, Saccharomyces cerevisiae, via the yeast natural homologous recombination machinery. The simple and straightforward DZA cloning strategy reported here might be of interest to scientists working in the field of xenobiology in yeast.


Assuntos
Ácidos Nucleicos , Saccharomyces cerevisiae , Clonagem Molecular , DNA/química , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Ácidos Nucleicos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biologia Sintética
8.
Photochem Photobiol ; 98(1): 275-283, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34727376

RESUMO

Nowadays the recombinant Ca2+ -regulated photoproteins originating from marine luminous organisms are widely applied to monitor calcium transients in living cells due to their ability to emit light on Ca2+ binding. Here we report the specific activities of the recombinant Ca2+ -regulated photoproteins-aequorin from Aequorea victoria, obelins from Obelia longissima and Obelia geniculata, clytin from Clytia gregaria and mitrocomin from Mitrocoma cellularia. We demonstrate that along with bioluminescence spectra, kinetics of light signals and sensitivities to calcium, these photoproteins also differ in specific activities and consequently in quantum yields of bioluminescent reactions. The highest specific activities were found for obelins and mitrocomin, whereas those of aequorin and clytin were shown to be lower. To determine the factors influencing the variations in specific activities the fluorescence quantum yields for Ca2+ -discharged photoproteins were measured and found to be quite different varying in the range of 0.16-0.36. We propose that distinctions in specific activities may result from different efficiencies of singlet excited state generation and different fluorescence quantum yields of coelenteramide bound within substrate-binding cavity. This in turn may be conditioned by variations in the amino acid environment of the substrate-binding cavities and hydrogen bond distances between key residues and atoms of 2-hydroperoxycoelenterazine.


Assuntos
Equorina , Hidrozoários , Equorina/metabolismo , Animais , Cálcio/metabolismo , Hidrozoários/metabolismo , Cinética , Proteínas Luminescentes/metabolismo
9.
Protein Sci ; 31(2): 454-469, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34802167

RESUMO

Coelenterazine-v (CTZ-v), a synthetic derivative with an additional benzyl ring, yields a bright bioluminescence of Renilla luciferase and its "yellow" mutant with a significant shift in the emission spectrum toward longer wavelengths, which makes it the substrate of choice for deep tissue imaging. Although Ca2+ -regulated photoproteins activated with CTZ-v also display red-shifted light emission, in contrast to Renilla luciferase their bioluminescence activities are very low, which makes photoproteins activated by CTZ-v unusable for calcium imaging. Here, we report the crystal structure of Ca2+ -regulated photoprotein obelin with 2-hydroperoxycoelenterazine-v (obelin-v) at 1.80 Å resolution. The structures of obelin-v and obelin bound with native CTZ revealed almost no difference; only the minor rearrangement in hydrogen-bond pattern and slightly increased distances between key active site residues and some atoms of 2-hydroperoxycoelenterazine-v were found. The fluorescence quantum yield (ΦFL ) of obelin bound with coelenteramide-v (0.24) turned out to be even higher than that of obelin with native coelenteramide (0.19). Since both obelins are in effect the enzyme-substrate complexes containing the 2-hydroperoxy adduct of CTZ-v or CTZ, we reasonably assume the chemical reaction mechanisms and the yields of the reaction products (ΦR ) to be similar for both obelins. Based on these findings we suggest that low bioluminescence activity of obelin-v is caused by the low efficiency of generating an electronic excited state (ΦS ). In turn, the low ΦS value as compared to that of native CTZ might be the result of small changes in the substrate microenvironment in the obelin-v active site.


Assuntos
Cálcio , Medições Luminescentes , Cálcio/metabolismo , Ligação de Hidrogênio , Proteínas Luminescentes/química , Conformação Proteica
10.
Angew Chem Int Ed Engl ; 60(8): 4175-4182, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33142013

RESUMO

Synthetic nucleic acids, with four non-canonical nucleobases, can function as genetic materials. A comprehensive analysis of PCR amplification, transcription, reverse transcription, and cloning was done to screen for alternative genetic monomers. A small library of six modified nucleobases was selected: the modified 2'-deoxyribonucleoside (dZTPs) and ribonucleoside (rZTPs) triphosphates of 7-deaza-adenine, 5-chlorouracil, 7-deaza-guanine or inosine together with 5-fluorocytosine or 5-bromocytosine. The fragments composed of one to four modified nucleotides (denoted as DZA) have been successfully recognized and transcribed to natural or modified RNA (denoted as RZA) by T7 RNA polymerase. The fully modified RZA fragment could be reverse transcribed and then amplified in the presence of various dZTPs. Noticeably, modified fragments could function as genetic templates in vivo by encoding the 678 base pair gene of a fluorescent protein in bacteria. These results demonstrate the existence of a fully simulated genetic circuit that uses synthetic materials.


Assuntos
Ácidos Nucleicos/metabolismo , Biologia Sintética/métodos , Citosina/análogos & derivados , Citosina/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Uracila/análogos & derivados , Uracila/metabolismo , Proteínas Virais/metabolismo
11.
ACS Appl Mater Interfaces ; 12(40): 45145-45154, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32816443

RESUMO

This study addresses the inkjet printing approach for fabrication of cellulose nanocrystalline (CNC) patterns with tunable optical properties varied by the thickness of deposited layers. In particular, forming functional patterns visible only in linearly polarized light is of the primary interest. The possibility of controlling the bright iridescent color response associated with the birefringence in the chiral anisotropic structure of inkjet-printed layers of CNC with sulfo-groups (s-CNC) has been thoroughly investigated. In this connection, we have elaborated an appropriate synthesis sequence for deriving printable inks in the form of sedimentation-stable s-CNC colloids with various concentrations of solid phase and experimentally determined the optimal regimes of their inkjet printing. For this purpose, the rheological parameters and s-CNC particle concentration have also been optimized. The study is accomplished with a comprehensive optical characterization of the deposited s-CNC layers with variable thickness, drying conditions, and the polarization state. The experimental results demonstrate the feasibility of inkjet printing technology to perform the precise fabrication of optically active s-CNC patterns with variable optical properties. These results are particularly relevant for applications requiring special conditions of color demonstration in security printing for such as anticounterfeiting applications, polygraphy decoration printing, and color photo filters.

12.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751691

RESUMO

Ca2+-regulated photoproteins responsible for bioluminescence of a variety of marine organisms are single-chain globular proteins within the inner cavity of which the oxygenated coelenterazine, 2-hydroperoxycoelenterazine, is tightly bound. Alongside with native coelenterazine, photoproteins can also use its synthetic analogues as substrates to produce flash-type bioluminescence. However, information on the effect of modifications of various groups of coelenterazine and amino acid environment of the protein active site on the bioluminescent properties of the corresponding semi-synthetic photoproteins is fragmentary and often controversial. In this paper, we investigated the specific bioluminescence activity, light emission spectra, stopped-flow kinetics and sensitivity to calcium of the semi-synthetic aequorins and obelins activated by novel coelenterazine analogues and the recently reported coelenterazine derivatives. Several semi-synthetic photoproteins activated by the studied coelenterazine analogues displayed sufficient bioluminescence activities accompanied by various changes in the spectral and kinetic properties as well as in calcium sensitivity. The poor activity of certain semi-synthetic photoproteins might be attributed to instability of some coelenterazine analogues in solution and low efficiency of 2-hydroperoxy adduct formation. In most cases, semi-synthetic obelins and aequorins displayed different properties upon being activated by the same coelenterazine analogue. The results indicated that the OH-group at the C-6 phenyl ring of coelenterazine is important for the photoprotein bioluminescence and that the hydrogen-bond network around the substituent in position 6 of the imidazopyrazinone core could be the reason of different bioluminescence activities of aequorin and obelin with certain coelenterazine analogues.


Assuntos
Equorina/metabolismo , Proteínas Luminescentes/química , Equorina/síntese química , Equorina/química , Animais , Cálcio/metabolismo , Ligação de Hidrogênio/efeitos dos fármacos , Imidazóis/química , Imidazóis/farmacologia , Proteínas Luminescentes/síntese química , Proteínas Luminescentes/metabolismo , Mutagênese Sítio-Dirigida , Conformação Proteica/efeitos dos fármacos , Pirazinas/química , Pirazinas/farmacologia
13.
Chemistry ; 26(43): 9589-9597, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32363791

RESUMO

The replacement of one or more nucleotide residues in the potent α-thrombin-binding aptamer NU172 with hexitol-based nucleotides has been devised to study the effect of these substitutions on the physicochemical and functional properties of the anticoagulant agent. The incorporation of single hexitol nucleotides at the T9 and G18 positions of NU172 substantially retained the physicochemical features of the parent oligonucleotide, as a result of the biomimetic properties of the hexitol backbone. Importantly, the NU172-TH 9 mutant exhibited a higher binding affinity toward human α-thrombin than the native aptamer and an improved stability even after 24 h in 90 % human serum, with a significant increase in the estimated half-life. The anticoagulant activity of the modified oligonucleotide was also found to be slightly preferable to NU172. Overall, these results confirm the potential of hexitol nucleotides as biomimetic agents, while laying the foundations for the development of NU172-inspired α-thrombin-binding aptamers.


Assuntos
Anticoagulantes/química , Aptâmeros de Nucleotídeos/química , Álcoois Açúcares/química , Trombina/química , Humanos , Relação Estrutura-Atividade
14.
Photochem Photobiol ; 96(5): 1047-1060, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32416626

RESUMO

Calcium-regulated photoproteins are found in at least five phyla of organisms. The light emitted by those photoproteins can be tuned by mutating the photoprotein and/or by modifying the substrate coelenterazine (CTZ). Thirty years ago, Shimomura observed that the luminescence activity of aequorin was dramatically reduced when the substrate CTZ was replaced by its analog v-CTZ. The latter is formed by adding a phenyl ring to the π-conjugated moiety of CTZ. The decrease in luminescence activity has not been understood until now. In this paper, through combined quantum mechanics and molecular mechanics calculations as well as molecular dynamics simulations, we discovered the reason for this observation. Modification of the substrate changes the conformation of nearby aromatic residues and enhances the π-π stacking interactions between the conjugated moiety of v-CTZ and the residues, which weakens the charge transfer to form light emitter and leads to a lower luminescence activity. The microenvironments of CTZ in obelin and in aequorin are very similar, so we predicted that the luminescence activity of obelin will also dramatically decrease when CTZ is replaced by v-CTZ. This prediction has received strong evidence from currently theoretical calculations and has been verified by experiments.


Assuntos
Cálcio/química , Imidazóis/química , Medições Luminescentes/métodos , Proteínas Luminescentes/química , Pirazinas/química , Modelos Teóricos , Simulação de Dinâmica Molecular , Conformação Proteica , Teoria Quântica
15.
Photochem Photobiol Sci ; 19(3): 313-323, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32057065

RESUMO

Light-sensitive Ca2+-regulated photoprotein berovin is responsible for the bioluminescence of the ctenophore Beroe abyssicola. It shares many properties of hydromedusan photoproteins although the degree of identity of its amino acid sequence with those of photoproteins is low. There is a hydrogen bond between C-terminal Pro and Arg situated in the N-terminal α-helix of hydromedusan photoproteins that supports a closed conformation of the internal cavity of the photoprotein molecule with bound 2-hydroperoxycoelenterazine. The C- and N-terminal hydrogen bond network is necessary to properly isolate the photoprotein active site from the solvent and consequently to provide a high quantum yield of the bioluminescence reaction. In order to find out which berovin residues perform the same function we modified the N- and C-termini of the protein by replacing or deleting various amino acid residues. The studies on berovin mutants showed that the interaction between C-terminal Tyr208 and Tyr13 localized in the first α-helix of the photoprotein is important for the stabilization and proper orientation of the oxygenated coelenterazine adduct within the internal cavity as well as for supporting the closed photoprotein conformation. We also suggest that the interplay between Tyr residues in ctenophore photoproteins occurs rather through the π-π interaction of their phenyl rings than through hydrogen bonds as in hydromedusan photoproteins.


Assuntos
Ctenóforos/química , Proteínas Luminescentes/química , Tirosina/química , Sequência de Aminoácidos , Animais , Medições Luminescentes , Conformação Proteica em alfa-Hélice , Alinhamento de Sequência
16.
Chembiochem ; 21(1-2): 272-278, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31868979

RESUMO

Chemically modified genes and genomes with customized properties will become a valuable tool in numerous fields, including synthetic biology, biotechnology, and medicine. These genetic materials are meant to store and exchange information with DNA and RNA while tuning their functionality. Herein, we outline the development of an alternative genetic system carrying phosphoramidate linkages that successfully propagates genetic information in bacteria and at the same time is labile to acidic conditions. The P3'→N5' phosphoramidate-containing DNA (PN-DNA) was enzymatically synthesized by using 5'-amino-2',5'-deoxycytidine 5'-N-triphosphates (NH-dCTPs) as substrates for DNA polymerases and employed to encode antibiotic resistance in Escherichia coli. The resulting PN-DNA can be efficiently destroyed by mild acidic conditions, whereas an unmodified counterpart remains intact. A cloning strategy was proposed for assembling modified fragments into a genome. This method can be of interest to scientists working in the field of orthogonal nucleic acid genes and genomes.


Assuntos
Amidas/química , DNA/genética , Ácidos Fosfóricos/química , DNA/química , Perfilação da Expressão Gênica , Concentração de Íons de Hidrogênio , Oligonucleotídeos/química , Reação em Cadeia da Polimerase
17.
Acta Clin Croat ; 58(2): 354-364, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31819334

RESUMO

The literature devoted to changes in the expression of the renin-angiotensin system (RAS) proteins of cancer cells was analyzed. The dynamics of RAS protein expression in malignant tumors and the possible role of epigenetic mechanisms in these processes are briefly reviewed. Through research of the epigenetic mechanisms in cancer, principally new techniques for their correction based on the use of selective regulatory systems of covalent modification of histone proteins (for example, deacetylase inhibitor) and microRNA synthesis technologies have been developed. Literature data show promising pharmacological correction of epigenetic modification of chromatin in the treatment of cancer.


Assuntos
Epigênese Genética , Neoplasias/genética , Peptidil Dipeptidase A/genética , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 2 de Angiotensina/genética , Sistema Renina-Angiotensina/genética , Enzima de Conversão de Angiotensina 2 , Angiotensinas/genética , Animais , Humanos , Renina/genética
18.
Curr Opin Biotechnol ; 60: 259-267, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31759815

RESUMO

To increase the scope of natural biosystem, nucleic acids have been intensively modified. One direction includes the development of a synthetic alternative to the native DNA and RNA, denoted Xenobiotic nucleic acids (XNAs) that are able to store and transfer genetic information either by base-modification or backbone-modification. Another line of research aims to develop alternative third base pair additional to natural A:T and G:C. These unnatural base pairs (UBPs) can store increased information content encoded in three base pairs. This review outlines the recent progress made towards XNA and UBP applications as new components of the genomic DNA as well as biostable aptamers. New achievements in the replacement of a bacterial genome by unnatural non-canonical nucleotides are also described.

19.
Nucleic Acids Res ; 47(10): 4927-4939, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30968117

RESUMO

Biomedical applications of nucleic acid aptamers are limited by their rapid degradation in biological fluids and generally demand tedious post-selection modifications that might compromise binding. One possible solution to warrant biostability is to directly evolve chemically modified aptamers from xenobiotic nucleic acids (XNAs). We have isolated fully modified 2'-O-methyl-ribose-1,5-anhydrohexitol nucleic acid (MeORNA-HNA) aptamers targeting the rat vascular endothelial growth factor 164 (rVEGF164). Three sequences have been identified that interact with the target protein with affinities in the low-nanomolar range and HNA modifications appeared to be mandatory for their tight binding. The evolution of these XNA aptamers was accomplished using an in vitro selection procedure starting from a fully sugar-modified library containing a 20mer 2'-OMe-ribonucleotide region followed by a 47mer HNA sequence. The high binding affinity and selectivity of the selected aptamers were confirmed by several methods including gel-shift, fluorescence polarisation, and enzyme-linked oligonucleotide assays. The isolated HNA ligands exhibited higher specificity to the rVEGF164 and human VEGF165 isoforms compared to rat VEGF120, while very low binding efficiencies were observed to streptavidin and thrombin. Furthermore, it was clearly demonstrated that the resulting aptamers possessed a superior stability to degradation in human serum and DNase I solutions.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnica de Seleção de Aptâmeros/métodos , Álcoois Açúcares/química , Fator A de Crescimento do Endotélio Vascular/química , Animais , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Humanos , Ligantes , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Estreptavidina/química , Estreptavidina/metabolismo , Trombina/química , Trombina/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Photochem Photobiol ; 95(1): 8-23, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29855041

RESUMO

Site-directed mutagenesis is a powerful tool to investigate the structure-function relationship of proteins and a function of certain amino acid residues in catalytic conversion of substrates during enzymatic reactions. Hence, it is not surprising that this approach was repeatedly applied to elucidate the role of certain amino acid residues in various aspects of photoprotein bioluminescence, mostly for aequorin and obelin, and to design mutant photoproteins with altered properties (modified calcium affinity, faster or slower bioluminescence kinetics, different emission color) which would either allow the development of novel bioluminescent assays or improvement of characteristics of the already existing ones. This information, however, is scattered over different articles. In this review, we systematize the findings that were made using site-directed mutagenesis studies regarding the impact of various amino acid residues on bioluminescence of hydromedusan Ca2+ -regulated photoproteins. All key residues that have been identified are pinpointed, and their influence on different aspects of photoprotein functioning such as active photoprotein complex formation, bioluminescence reaction, calcium response and light emitter formation is discussed.


Assuntos
Cálcio/metabolismo , Medições Luminescentes , Proteínas Luminescentes/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Sítios de Ligação , Cinética , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Mutagênese Sítio-Dirigida , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA