Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Radiat Res ; 64(1): 113-125, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36527720

RESUMO

Neuroblastoma (NB) is a common type of cancer found mostly in infants and arising from the immature neural crest cells of the sympathetic nervous system. Using laser trapping (LT) technique, the present work contributes to advancing radiotherapy (RT), a leading treatment method for cancer. A single, 2-cells, 3-cells, 4-cells, and 5-cells were trapped using the high-intensity gradient infrared laser at 1064 nm and allowed to become ionized. In this work, a systematic study of Threshold Ionization Energy (TIE) and Threshold Radiation Dose (TRD) versus mass for both single and multi-cell ionization using laser trapping (LT) techniques on NB is presented. The results show that TIE increased as the mass of cells increased, meanwhile TRD decreased with the increase of cell mass. We observed an inverse correlation between TRD and cell mass. We demonstrate how to compute the maximum radiation dosage for cell death using the LT technique. Results show a possible blueprint for computing the TRD in vivo. The use of multiple cell ionization to determine radiation dosage along with better data accuracy concerning the tumor size and density will have profound implications for radiation dosimetry. The diminution in TRD becomes more significant in multiple cell ionization as we see in TRD vs the number of cells entering the trap. This is due to the chain effect generated by radiation and the absorption by water molecules at 1064 nm. This result provides us with better insight into the optimization of the therapeutic ratio.


Assuntos
Luz , Neuroblastoma , Lactente , Humanos , Doses de Radiação , Radiometria , Lasers , Neuroblastoma/radioterapia
2.
Tomography ; 9(1): 70-88, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36648994

RESUMO

The post-ionization dynamics of chemo-treated and untreated 4T1 breast cancer cells ionized by laser trapping techniques are studied. We have determined each cell's charge and refractive index by developing a theoretical model for the forces determining the post-ionization dynamics. The shift in a cell's refractive index due to an intense oscillating electric field was studied, and the results are reported here. We observed that a trapped cell, as it becomes charged, will eventually exit the trap perpendicular to the beam's direction; this means that the electric force of the cell overcomes the trapping force. As a result, the cell's conductivity changes due to the oscillating field, causing a decrease in the cell's refractive index.


Assuntos
Modelos Teóricos , Refratometria
3.
J Biomed Opt ; 26(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34590447

RESUMO

SIGNIFICANCE: We introduce a model for better calibration of the trapping force using an equal but oppositely directed drag force acting on a trapped red blood cell (RBC). We demonstrate this approach by studying RBCs' elastic properties from deidentified sickle cell anemia (SCA) and sickle cell trait (SCT) blood samples. AIM: A laser trapping (LT) force was formulated and analytically calculated in a cylindrical model. Using this trapping force relative percent difference, the maximum (longitudinal) and minimum (transverse) radius rate and stiffness were used to study the elasticity. APPROACH: The elastic property of SCA and SCT RBCs was analyzed using LT technique with computer controlled piezo-driven stage, in order to trap and stretch the RBCs. RESULTS: For all parameters, the results show that the SCT RBC samples have higher elastic property than the SCA RBCs. The higher rigidity in the SCA cell may be due to the lipid composition of the membrane, which was affected by the cholesterol concentration. CONCLUSIONS: By developing a theoretical model for different trapping forces, we have also studied the elasticity of RBCs in SCT (with hemoglobin type HbAS) and in SCA (with hemoglobin type HbSS). The results for the quantities describing the elasticity of the cells consistently showed that the RBCs in the SCT display lower rigidity and higher deformability than the RBCs with SCA.


Assuntos
Anemia Falciforme , Traço Falciforme , Contagem de Eritrócitos , Eritrócitos , Eritrócitos Anormais , Humanos
4.
Sci Rep ; 9(1): 17547, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772194

RESUMO

We present a study that uses a laser trapping technique for measurement of radiation sensitivity of untreated and chemo-treated cancer cells. We used a human mammary tumor cell line (4T1) treated by an antitumor compound, 2-Dodecyl-6-methoxycyclohexa-2, 5-diene-1,4-dione (DMDD), which was extracted from the root of Averrhoa carambola L. The untreated control group, and both 2-hour and 24-hour treated groups of 4T1 cells were used in this study. The absorbed threshold ionization energy (TIE) and the threshold radiation dose (TRD) were determined using a high-power infrared laser (at 1064 nm) trap by single and multiple cells trapping and ionization. The results were analyzed using descriptive and t-statistics. The relation of the TIE and TRD to the mass of the individual cells were also analyzed for different hours of treatment in comparison with the control group. Both TIE and TRD decrease with increasing treatment periods. However, the TRD decreases with mass regardless of the treatment. Analyses of the TRD for single vs multiple cells ionizations within each group have also consistently showed this same behavior regardless of the treatment. The underlying factors for these observed relations are explained in terms of radiation, hyperthermia, and chemo effects.


Assuntos
Neoplasias da Mama/terapia , Quimiorradioterapia/métodos , Averrhoa/química , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos da radiação , Cicloexenos/farmacologia , Feminino , Humanos , Raios Infravermelhos , Lasers , Extratos Vegetais/uso terapêutico , Doses de Radiação
5.
J Biomed Opt ; 23(5): 1-10, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29851330

RESUMO

An approach to an established technique that is potentially applicable for a more comprehensive understanding of the electrical properties of red blood cells (RBCs) is presented. Using a high-intensity gradient laser trap, RBCs can be singly trapped and consequentially ionized. The subsequent dynamics of the ionized cell allows one to calculate the charge developed and the ionization energy (IE) through a Newtonian-based analysis. RBCs with two different hemoglobin (Hb) types were ionized. The first sample was identified as carrying Hb HbAA (normal Hb) and the second one was identified as carrying HbAC (HbC trait). By analyzing the charge developed on each cell and several other related factors, we were able to discern a difference between the main Hb types contained within the individual RBC, independent of cell size. A relationship between the charge developed and the IE of the cell was also established based on the electrical properties of RBCs. Thus, we present this laser trapping technique as a study of the electrical properties of RBCs and as possible biomedical tool to be used for the differentiation of Hb types.


Assuntos
Eritrócitos/química , Eritrócitos/citologia , Hemoglobinas/química , Pinças Ópticas , Análise de Célula Única/métodos , Hemoglobinas/análise , Humanos
6.
Biomed Opt Express ; 7(9): 3438-3448, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27699110

RESUMO

In this work, a preliminary study in the application of a laser trap for ionization of living carcinoma cells is presented. The study was conducted using BT20 breast carcinoma cells cultured and harvested in our laboratory. Each cell, for a total of 50 cells, was trapped and ionized by a high intensity infrared laser at 1064 nm. The threshold radiation dose and the resultant charge from the ionization for each cell were determined. With the laser trap serving as a radiation source, the cell underwent dielectric breakdown of the membrane. When this process occurs, the cell becomes highly charged and its dielectric susceptibility changes. The charge creates an increasing electrostatic force while the changing dielectric susceptibility diminishes the strength of the trapping force. Consequently, at some instant of time the cell gets ejected from the trap. The time inside the trap while the cell is being ionized, the intensity of the radiation, and the post ionization trajectory of the cell were used to determine the threshold radiation dose and the charge for each cell. The measurement of the charge vs ionization radiation dose at single cell level could be useful in the accuracy of radiotherapy as the individual charges can collectively create a strong enough electrical interaction to cause dielectric breakdown in other cells in a tumor.

7.
Biomed Opt Express ; 3(9): 2190-9, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23024913

RESUMO

Using a laser trap, we have studied the properties of erythrocytes from a sickle cell anemia patient (SCA) after receiving an intravenous blood transfusion, and a normal adult individual carrying normal adult hemoglobin. The hemoglobin type and quantitation assessment was carried out by high performance liquid chromatography (HPLC). We conducted an analysis of the size distributions of the cells. By targeting those erythrocytes in the overlapping regions of size distributions, we have investigated their properties when the cells are trapped and released. The efficacy of the transfusion treatment is also studied by comparing the relative changes in deformation and the relaxation-time of the cells in the two samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA