Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 36(2): 241-51, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17991767

RESUMO

Bicifadine [DOV 220,075; (+/-)-1-(4-methylphenyl)-3-azabicyclo[3.1.0]-hexane HCl)] is a non-narcotic analgesic that is effective in animal models of acute and chronic pain. In this study, the pharmacokinetics, disposition, and metabolism of bicifadine were determined in male and female mice, rats, and cynomolgus monkeys following single oral and i.v. doses. [(14)C]Bicifadine was well absorbed in all three species. The oral bioavailability of bicifadine in mice and rats was 50 to 63% and 79 to 85%, respectively, and slightly lower in monkeys (33-42%). Based on the values of the area under the concentration-time curves, unchanged bicifadine comprised 7 to 12% of the plasma radioactivity after the oral dose and 14 to 26% after the i.v. dose in all three species. The major plasma metabolites were the lactam (M12), the lactam acid (M9), and the acid (M3) plus its glucuronide conjugate. At 0.5 h after the oral dose to rats, 63 to 64% of the radioactivity in the rat brain was bicifadine, and the remainder was the lactam. Most of the radioactivity after oral and i.v. dosing to the three species was recovered in the urine. The lactam acid was the major urinary metabolite in all species; bicifadine and the lactam were either not detected or were minor components in urine. Fecal radioactivity was due to the acid and lactam acid in the three species. Rat bile contained mainly the lactam acid and the acid plus its acyl glucuronide. Plasma protein binding of [(14)C]bicifadine was moderate in the mouse (80-86%) and higher in the rat and monkey (95-97%). In summary, bicifadine was well absorbed, extensively metabolized, and excreted via the urine and feces as metabolites.


Assuntos
Analgésicos/farmacocinética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacocinética , Administração Oral , Analgésicos/administração & dosagem , Analgésicos/sangue , Analgésicos/urina , Animais , Bile/química , Proteínas Sanguíneas/metabolismo , Encéfalo/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/sangue , Compostos Bicíclicos Heterocíclicos com Pontes/urina , Fezes/química , Feminino , Injeções Intravenosas , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos , Ratos , Ratos Sprague-Dawley
2.
Drug Metab Dispos ; 35(12): 2232-41, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17881661

RESUMO

The in vitro metabolism of [(14)C]bicifadine by hepatic microsomes and hepatocytes from mouse, rat, monkey, and human was compared using radiometric high-performance liquid chromatography and liquid chromatography/tandem mass spectrometry. Two main metabolic pathways were identified in all four species. One pathway was an NADPH-dependent pathway in which the methyl group was oxidized to form a hydroxymethyl metabolite (M2). Its formation was inhibited in human microsomes only by quinidine, a CYP2D6 inhibitor. In incubations with individual cDNA-expressed human cytochromes P450, M2 was formed only by CYP2D6 and CYP1A2, with CYP2D6 activity 6-fold greater than that of CYP1A2. M2 was oxidized further to the carboxylic acid metabolite (M3) by hepatocytes from all four species. The second major metabolic pathway was an NADPH-independent oxidation at the C2 position of the pyrrolidine ring, forming a lactam metabolite (M12). This reaction was almost completely inhibited in human hepatic microsomes and mitochondria by the monoamine oxidase (MAO)-B-specific inhibitor selegiline. Clorgyline, a specific inhibitor of MAO-A, was less effective in inhibiting M12 formation. Other metabolic pathways of variable significance among the four species included the formation of carbamoyl-O-glucuronide, hydroxymethyl lactam, and carboxyl lactam. Overall, the data indicate that the primary enzymes responsible for the primary metabolism of bicifadine in humans are MAO-B and CYP2D6.


Assuntos
Analgésicos/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Fígado/enzimologia , Monoaminoxidase/metabolismo , Animais , Radioisótopos de Carbono , Ácidos Carboxílicos/metabolismo , Cromatografia Líquida de Alta Pressão , Clorgilina/farmacologia , Inibidores do Citocromo P-450 CYP2D6 , Inibidores Enzimáticos/farmacologia , Feminino , Glucuronídeos/metabolismo , Hepatócitos/enzimologia , Humanos , Hidroxilação , Técnicas In Vitro , Lactamas/metabolismo , Fígado/citologia , Fígado/efeitos dos fármacos , Macaca fascicularis , Masculino , Camundongos , Microssomos Hepáticos/enzimologia , Pessoa de Meia-Idade , Mitocôndrias Hepáticas/enzimologia , Inibidores da Monoaminoxidase/farmacologia , NADP/metabolismo , Oxirredução , Quinidina/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Selegilina/farmacologia , Especificidade da Espécie , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA