Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
2.
J Hosp Med ; 19(2): 136-139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36975180
3.
J Biomech Eng ; 146(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916891

RESUMO

Performing a small bowel anastomosis, or reconnecting small bowel segments, remains a core competency and critical step for the successful surgical management of numerous bowel and urinary conditions. As surgical education and technology moves toward improving patient outcomes through automation and increasing training opportunities, a detailed characterization of the interventional biomechanical properties of the human bowel is important. This is especially true due to the prevalence of anastomotic leakage as a frequent (3.02%) postoperative complication of small bowel anastomoses. This study aims to characterize the forces required for a suture to tear through human small bowel (suture pullout force, SPOF), while analyzing how these forces are affected by tissue orientation, suture material, suture size, and donor demographics. 803 tests were performed on 35 human small bowel specimens. A uni-axial test frame was used to tension sutures looped through 10 × 20 mm rectangular bowel samples to tissue failure. The mean SPOF of the small bowel was 4.62±1.40 N. We found no significant effect of tissue orientation (p = 0.083), suture material (p = 0.681), suture size (p = 0.131), age (p = 0.158), sex (p = .083), or body mass index (BMI) (p = 0.100) on SPOF. To our knowledge, this is the first study reporting human small bowel SPOF. Little research has been published about procedure-specific data on human small bowel. Filling this gap in research will inform the design of more accurate human bowel synthetic models and provide an accurate baseline for training and clinical applications.


Assuntos
Fenômenos Mecânicos , Suturas , Humanos , Anastomose Cirúrgica
4.
Parkinsonism Relat Disord ; 101: 57-61, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35797857

RESUMO

INTRODUCTION: Disrupted sleep and excessive daytime sleepiness (EDS) are common and disabling symptoms of Parkinson's disease (PD). The relationships between subjective and objective assessments of sleep and sleepiness in PD are not well established. We aimed to examine the relationships between self-reported (subjective) and objective assessments of sleep and sleepiness in PD. METHODS: Epworth Sleepiness Scale (ESS), Pittsburg Sleep Quality Index (PSQI), Parkinson's Disease Sleep Scale (PDSS), sleep diaries, and overnight polysomnography (PSG) with next-morning multiple sleep latency testing (MSLT) were collected from 27 individuals with PD and EDS who participated in a clinical trial of light therapy for EDS in PD. RESULTS: No significant correlations were found between measures of EDS and night-time sleep quality and quantity. PDSS was correlated with PSQI. PDSS and PSQI had significant relationships with multiple metrics derived from sleep diaries, including sleep latency, quality, and ease of falling asleep. Several PSG-derived sleep metrics correlated well with sleep diary metrics. CONCLUSIONS: There is a poor correlation between metrics used to assess sleep and sleepiness in PD. A sleep diary may be a valuable tool for this purpose. Accurate clinical and research assessment and monitoring require refinement of existing and development of novel methods for measuring sleep and sleepiness in PD.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Doença de Parkinson , Transtornos do Sono-Vigília , Distúrbios do Sono por Sonolência Excessiva/diagnóstico , Distúrbios do Sono por Sonolência Excessiva/etiologia , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Autorrelato , Qualidade do Sono , Transtornos do Sono-Vigília/diagnóstico , Transtornos do Sono-Vigília/tratamento farmacológico , Transtornos do Sono-Vigília/etiologia , Sonolência
5.
J Gen Intern Med ; 37(5): 1258-1260, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35091917

RESUMO

Hospitalized incarcerated patients are commonly shackled throughout their duration of treatment in community medical centers to prevent escape or harm to others. In the absence of overarching policies guiding the shackling of non-pregnant, incarcerated patients, clinicians rarely unshackle patients during routine care. We provide a medical-legal lens through which to examine inpatient shackling, review the limited evidence supporting the practice, and highlight harms associated with shackling in the hospital. We conclude by offering guidance to advance evidence-based shackling practices that prevent physical harm, reduce prejudice towards incarcerated patients, and relinquish reliance on shackles in favor of tailored security measures.


Assuntos
Hospitais , Humanos
6.
Mol Cancer Ther ; 20(6): 1112-1120, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33722856

RESUMO

Calicheamicin antibody-drug conjugates (ADCs) are effective therapeutics for leukemias with two recently approved in the United States: Mylotarg (gemtuzumab ozogamicin) targeting CD33 for acute myeloid leukemia and Besponsa (inotuzumab ozogamicin) targeting CD22 for acute lymphocytic leukemia. Both of these calicheamicin ADCs are heterogeneous, aggregation-prone, and have a shortened half-life due to the instability of the acid-sensitive hydrazone linker in circulation. We hypothesized that we could improve upon the heterogeneity, aggregation, and circulation stability of calicheamicin ADCs by directly attaching the thiol of a reduced calicheamicin to an engineered cysteine on the antibody via a disulfide bond to generate a linkerless and traceless conjugate. We report herein that the resulting homogeneous conjugates possess minimal aggregation and display high in vivo stability with 50% of the drug remaining conjugated to the antibody after 21 days. Furthermore, these calicheamicin ADCs are highly efficacious in mouse models of both solid tumor (HER2+ breast cancer) and hematologic malignancies (CD22+ non-Hodgkin lymphoma). Safety studies in rats with this novel calicheamicin ADC revealed an increased tolerability compared with that reported for Mylotarg. Overall, we demonstrate that applying novel linker chemistry with site-specific conjugation affords an improved, next-generation calicheamicin ADC.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Calicheamicinas/uso terapêutico , Imunoconjugados/uso terapêutico , Animais , Antibióticos Antineoplásicos/farmacologia , Calicheamicinas/farmacologia , Modelos Animais de Doenças , Humanos , Imunoconjugados/farmacologia , Camundongos
7.
JAMA Intern Med ; 179(11): 1561-1567, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31524937

RESUMO

IMPORTANCE: The United States has the world's highest rate of incarceration. Clinicians practicing outside of correctional facilities receive little dedicated training in the care of patients who are incarcerated, are unaware of guidelines for the treatment of patients in custody, and practice in health care systems with varying policies toward these patients. This review considers legal precedents for care of individuals who are incarcerated, frequently encountered terminology, characteristics of hospitalized incarcerated patients, considerations for clinical management, and challenges during transitions of care. OBSERVATIONS: The Eighth Amendment of the US Constitution mandates basic health care for incarcerated individuals within or outside of dedicated correctional facilities. Incarcerated patients in the acute hospital setting are predominantly young men who have received trauma-related admitting diagnoses. Hospital practices pertaining to privacy, physical restraint, discharge counseling, and surrogate decision-making are affected by a patient's incarcerated status under state or federal law, institutional policy, and individual health care professional practice. Transitions of care necessitate consideration of the disparate medical resources of correctional facilities as well as awareness of transitions unique to incarcerated individuals, such as compassionate release. CONCLUSIONS AND RELEVANCE: Patients who are incarcerated have a protected right to health care but may experience exceptions to physical comfort, health privacy, and informed decision-making in the acute care setting. Research on the management of issues associated with hospitalized incarcerated patients is limited and primarily focuses on the care of pregnant women, a small portion of all hospitalized incarcerated individuals. Clinicians and health care facilities should work toward creating evidence-based and legally supported guidelines for the care of incarcerated individuals in the acute care setting that balance the rights of the patient, responsibilities of the clinician, and safety mandates of the institution and law enforcement.

8.
Mol Pharm ; 16(9): 3926-3937, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31287952

RESUMO

Antibody-drug conjugates are an emerging class of cancer therapeutics constructed from monoclonal antibodies conjugated with small molecule effectors. First-generation molecules of this class often employed heterogeneous conjugation chemistry, but many site-specifically conjugated ADCs have been described recently. Here, we undertake a systematic comparison of ADCs made with the same antibody and the same macrocyclic maytansinoid effector but conjugated either heterogeneously at lysine residues or site-specifically at cysteine residues. Characterization of these ADCs in vitro reveals generally similar properties, including a similar catabolite profile, a key element in making a meaningful comparison of conjugation chemistries. In a mouse model of cervical cancer, the lysine-conjugated ADC affords greater efficacy on a molar payload basis. Rather than making general conclusions about ADCs conjugated by a particular chemistry, we interpret these results as highlighting the complexity of ADCs and the interplay between payload class, linker chemistry, target antigen, and other variables that determine efficacy in a given setting.


Assuntos
Anticorpos Monoclonais/química , Cisteína/química , Imunoconjugados/farmacocinética , Imunoconjugados/uso terapêutico , Lisina/química , Maitansina/imunologia , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Sobrevivência Celular/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Imunoconjugados/administração & dosagem , Injeções Intravenosas , Camundongos , Camundongos SCID , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Bioconjug Chem ; 29(7): 2468-2477, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29856915

RESUMO

Despite the recent success of antibody-drug conjugates (ADCs) in cancer therapy, a detailed understanding of their entry, trafficking, and metabolism in cancer cells is limited. To gain further insight into the activation mechanism of ADCs, we incorporated fluorescence resonance energy transfer (FRET) reporter groups into the linker connecting the antibody to the drug and studied various aspects of intracellular ADC processing mechanisms. When comparing the trafficking of the antibody-FRET drug conjugates in various different model cells, we found that the cellular background plays an important role in how the antigen-mediated antibody is processed. Certain tumor cells showed limited cytosolic transport of the payload despite efficient linker cleavage. Our FRET assay provides a facile and robust assessment of intracellular ADC activation that may have significant implications for the future development of ADCs.


Assuntos
Transporte Biológico , Transferência Ressonante de Energia de Fluorescência , Imunoconjugados/farmacocinética , Permeabilidade da Membrana Celular , Reagentes de Ligações Cruzadas/química , Humanos , Imunoconjugados/metabolismo , Peptídeos
10.
Bioconjug Chem ; 29(2): 473-485, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29425028

RESUMO

THIOMAB antibody technology utilizes cysteine residues engineered onto an antibody to allow for site-specific conjugation. The technology has enabled the exploration of different attachment sites on the antibody in combination with small molecules, peptides, or proteins to yield antibody conjugates with unique properties. As reported previously ( Shen , B. Q. , et al. ( 2012 ) Nat. Biotechnol. 30 , 184 - 189 ; Pillow , T. H. , et al. ( 2017 ) Chem. Sci. 8 , 366 - 370 ), the specific location of the site of conjugation on an antibody can impact the stability of the linkage to the engineered cysteine for both thio-succinimide and disulfide bonds. High stability of the linkage is usually desired to maximize the delivery of the cargo to the intended target. In the current study, cysteines were individually substituted into every position of the anti-HER2 antibody (trastuzumab), and the stabilities of drug conjugations at those sites were evaluated. We screened a total of 648 THIOMAB antibody-drug conjugates, each generated from a trastuzamab prepared by sequentially mutating non-cysteine amino acids in the light and heavy chains to cysteine. Each THIOMAB antibody variant was conjugated to either maleimidocaproyl-valine-citrulline-p-aminobenzyloxycarbonyl-monomethyl auristatin E (MC-vc-PAB-MMAE) or pyridyl disulfide monomethyl auristatin E (PDS-MMAE) using a high-throughput, on-bead conjugation and purification method. Greater than 50% of the THIOMAB antibody variants were successfully conjugated to both MMAE derivatives with a drug to antibody ratio (DAR) of >0.5 and <50% aggregation. The relative in vitro plasma stabilities for approximately 750 conjugates were assessed using enzyme-linked immunosorbent assays, and stable sites were confirmed with affinity-capture LC/MS-based detection methods. Highly stable conjugation sites for the two types of MMAE derivatives were identified on both the heavy and light chains. Although the stabilities of maleimide conjugates were shown to be greater than those of the disulfide conjugates, many sites were identified that were stable for both. Furthermore, in vitro stabilities of selected stable sites translated across different cytotoxic payloads and different target antibodies as well as to in vivo stability.


Assuntos
Antineoplásicos Imunológicos/química , Cisteína/química , Dissulfetos/química , Imunoconjugados/química , Maleimidas/química , Trastuzumab/química , Animais , Antineoplásicos Imunológicos/sangue , Cisteína/sangue , Cisteína/genética , Dissulfetos/sangue , Estabilidade de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , Imunoconjugados/sangue , Maleimidas/sangue , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oligopeptídeos/sangue , Oligopeptídeos/química , Agregados Proteicos , Estabilidade Proteica , Ratos , Trastuzumab/sangue , Trastuzumab/genética
11.
Medicine (Baltimore) ; 96(36): e8037, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28885372

RESUMO

BACKGROUND: Fatigue is the most commonly reported symptom among multiple sclerosis (MS) patients, more than a quarter of whom consider fatigue to be their most disabling symptom. However, there are few effective treatment options for fatigue. We aim to investigate whether supplemental exposure to bright white light will reduce MS-associated fatigue. METHODS: Eligible participants will have clinically confirmed multiple sclerosis based on the revised McDonald criteria (2010) and a score ≥36 on the Fatigue Severity Scale (FSS). Participants will be randomized 1:1 to bright white light (10,000 lux; active condition) or dim red light (<300 lux; control condition) self-administered for 1 hour twice daily. The study will include a 2-week baseline period, a 4-week treatment period, and a 4-week washout period. Participants will record their sleep duration, exercise, caffeine, and medication intake daily. Participants will record their fatigue using the Visual Analogue Fatigue Scale (VAFS) 4 times every third day, providing snapshots of their fatigue level at different times of day. Participants will self-report their fatigue severity using FSS on 3 separate visits: at baseline (week 0), following completion of the treatment phase (week 6), and at study completion (week 10). The primary outcome will be the change in the average FSS score after light therapy. We will perform an intention-to-treat analysis, comparing the active and control groups to assess the postintervention difference in fatigue levels reported on FSS. Secondary outcome measures include change in global VAFS scores during the light therapy and self-reported quality of life in the Multiple Sclerosis Quality of Life-54. DISCUSSION: We present a study design and rationale for randomizing a nonpharmacological intervention for MS-associated fatigue, using bright light therapy. The study limitations relate to the logistical issues of a self-administered intervention requiring frequent participant self-report in a relapsing condition. Ultimately, light therapy for the treatment of MS-associated fatigue may provide a low-cost, noninvasive, self-administered treatment for one of the most prevalent and burdensome symptoms experienced by people with MS.


Assuntos
Fadiga/complicações , Fadiga/terapia , Esclerose Múltipla/complicações , Esclerose Múltipla/terapia , Fototerapia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/psicologia , Seleção de Pacientes , Projetos de Pesquisa , Índice de Gravidade de Doença , Resultado do Tratamento , Adulto Jovem
12.
Bioconjug Chem ; 28(10): 2538-2548, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28885827

RESUMO

The incorporation of cysteines into antibodies by mutagenesis allows for the direct conjugation of small molecules to specific sites on the antibody via disulfide bonds. The stability of the disulfide bond linkage between the small molecule and the antibody is highly dependent on the location of the engineered cysteine in either the heavy chain (HC) or the light chain (LC) of the antibody. Here, we explore the basis for this site-dependent stability. We evaluated the in vivo efficacy and pharmacokinetics of five different cysteine mutants of trastuzumab conjugated to a pyrrolobenzodiazepine (PBD) via disulfide bonds. A significant correlation was observed between disulfide stability and efficacy for the conjugates. We hypothesized that the observed site-dependent stability of the disulfide-linked conjugates could be due to differences in the attachment site cysteine thiol pKa. We measured the cysteine thiol pKa using isothermal titration calorimetry (ITC) and found that the variants with the highest thiol pKa (LC K149C and HC A140C) were found to yield the conjugates with the greatest in vivo stability. Guided by homology modeling, we identified several mutations adjacent to LC K149C that reduced the cysteine thiol pKa and, thus, decreased the in vivo stability of the disulfide-linked PBD conjugated to LC K149C. We also present results suggesting that the high thiol pKa of LC K149C is responsible for the sustained circulation stability of LC K149C TDCs utilizing a maleimide-based linker. Taken together, our results provide evidence that the site-dependent stability of cys-engineered antibody-drug conjugates may be explained by interactions between the engineered cysteine and the local protein environment that serves to modulate the side-chain thiol pKa. The influence of cysteine thiol pKa on stability and efficacy offers a new parameter for the optimization of ADCs that utilize cysteine engineering.


Assuntos
Cisteína/química , Imunoconjugados/química , Benzodiazepinas/química , Estabilidade de Medicamentos , Imunoconjugados/genética , Maleimidas/química , Modelos Moleculares , Mutação , Conformação Proteica , Pirróis/química
13.
Bioconjug Chem ; 28(5): 1371-1381, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28388844

RESUMO

Antibody-drug conjugates (ADCs) are being actively pursued as a treatment option for cancer following the regulatory approval of brentuximab vedotin (Adcetris) and ado-trastuzumab emtansine (Kadcyla). ADCs consist of a cytotoxic agent conjugated to a targeting antibody through a linker. The two approved ADCs (and most ADCs now in the clinic that use a microtubule disrupting agent as the payload) are heterogeneous conjugates with an average drug-to-antibody ratio (DAR) of 3-4 (potentially ranging from 0 to 8 for individual species). Ado-trastuzumab emtansine employs DM1, a semisynthetic cytotoxic payload of the maytansinoid class, which is conjugated via lysine residues of the antibody to an average DAR of 3.5. To understand the effect of DAR on the preclinical properties of ADCs using maytansinoid cytotoxic agents, we prepared a series of conjugates with a cleavable linker (M9346A-sulfo-SPDB-DM4 targeting folate receptor α (FRα)) or an uncleavable linker (J2898A-SMCC-DM1 targeting the epidermal growth factor receptor (EGFR)) with varying DAR and evaluated their biochemical characteristics, in vivo stability, efficacy, and tolerability. For both formats, a series of ADCs with DARs ranging from low (average of ∼2 and range of 0-4) to very high (average of 10 and range of 7-14) were prepared in good yield with high monomer content and low levels of free cytotoxic agent. The in vitro potency consistently increased with increasing DAR at a constant antibody concentration. We then characterized the in vivo disposition of these ADCs. Pharmacokinetic analysis showed that conjugates with an average DAR below ∼6 had comparable clearance rates, but for those with an average DAR of ∼9-10, rapid clearance was observed. Biodistribution studies in mice showed that these 9-10 DAR ADCs rapidly accumulate in the liver, with maximum localization for this organ at 24-28% percentage injected dose per gram (%ID/g) compared with 7-10% for lower-DAR conjugates (all at 2-6 h post-injection). Our preclinical findings on tolerability and efficacy suggest that maytansinoid conjugates with DAR ranging from 2 to 6 have a better therapeutic index than conjugates with very high DAR (∼9-10). These very high DAR ADCs suffer from decreased efficacy, likely due to faster clearance. These results support the use of DAR 3-4 for maytansinoid ADCs but suggest that the exploration of lower or higher DAR may be warranted depending on the biology of the target antigen.


Assuntos
Anticorpos Monoclonais/imunologia , Antineoplásicos Fitogênicos/farmacocinética , Imunoconjugados/farmacocinética , Maitansina/farmacocinética , Animais , Antineoplásicos Fitogênicos/farmacologia , Feminino , Humanos , Imunoconjugados/farmacologia , Células KB , Maitansina/farmacologia , Camundongos , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Drug Metab Dispos ; 44(12): 1958-1962, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27683653

RESUMO

Pyrrolobenzodiazepine (PBD)-dimer is a DNA minor groove alkylator, and its CD22 THIOMAB antibody drug conjugate (ADC) demonstrated, through a disulfide linker, an efficacy in tumor reduction for more than 7 weeks with minimal body weight loss in xenograft mice after a single 0.5-1 mg/kg i.v. dose. The DNA alkylation was investigated here in tumors and healthy organs of mice to understand the sustained efficacy and tolerability. The experimental procedures included the collection of tumors and organ tissues of xenograft mice treated with the ADC followed by DNA isolation/hydrolysis/quantitation and payload recovery from reversible DNA alkylation. PBD-dimer formed a considerable amount of adducts with tissue DNA, representing approximately 98% (at 24 hours), and 99% (at 96 hours) of the total PBD-dimer in tumors, and 78-89% in liver and lung tissues, suggesting highly efficient covalent binding of the released PBD-dimer to tissue DNA. The amount of PBD-DNA adducts in tumor tissues was approximately 24-fold (at 24 hours) and 70-fold (at 96 hours) greater than the corresponding amount of adducts in liver and lung tissues. In addition, the DNA alkylation levels increased 3-fold to 4-fold from 24 to 96 hours in tumors [41/106 base pairs (bp) at 96 hours] but remained at the same level (1/106 bp) in livers and lungs. These results support the typical target-mediated cumulative uptake of ADC into tumors and payload release that offers an explanation for its sustained antitumor efficacy. In addition, the low level of DNA alkylation in normal tissues is consistent with the tolerability observed in mice.


Assuntos
Alquilação/fisiologia , Anticorpos/metabolismo , Benzodiazepinas/metabolismo , DNA/metabolismo , Pirróis/metabolismo , Animais , Adutos de DNA/metabolismo , Xenoenxertos/metabolismo , Imunoconjugados/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Camundongos , Neoplasias/metabolismo
15.
Drug Metab Dispos ; 44(9): 1517-23, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27417182

RESUMO

Despite recent technological advances in quantifying antibody drug conjugate (ADC) species, such as total antibody, conjugated antibody, conjugated drug, and payload drug in circulation, the correlation of their exposures with the efficacy of ADC outcomes in vivo remains challenging. Here, the chemical structures and concentrations of intratumor catabolites were investigated to better understand the drivers of ADC in vivo efficacy. Anti-CD22 disulfide-linked pyrrolobenzodiazepine (PBD-dimer) conjugates containing methyl- and cyclobutyl-substituted disulfide linkers exhibited strong efficacy in a WSU-DLCL2 xenograft mouse model, whereas an ADC derived from a cyclopropyl linker was inactive. Total ADC antibody concentrations and drug-to-antibody ratios (DAR) in circulation were similar between the cyclobutyl-containing ADC and the cyclopropyl-containing ADC; however, the former afforded the release of the PBD-dimer payload in the tumor, but the latter only generated a nonimmolating thiol-containing catabolite that did not bind to DNA. These results suggest that intratumor catabolite analysis rather than systemic pharmacokinetic analysis may be used to better explain and predict ADC in vivo efficacy. These are good examples to demonstrate that the chemical nature and concentration of intratumor catabolites depend on the linker type used for drug conjugation, and the potency of the released drug moiety ultimately determines the ADC in vivo efficacy.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Benzodiazepinas/farmacocinética , Imunoconjugados/farmacocinética , Neoplasias/metabolismo , Pirróis/farmacocinética , Animais , Anticorpos Monoclonais Humanizados/química , Benzodiazepinas/química , Feminino , Imunoconjugados/química , Camundongos , Camundongos SCID , Pirróis/química , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Mol Cancer Ther ; 15(6): 1311-20, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27197308

RESUMO

A triglycyl peptide linker (CX) was designed for use in antibody -: drug conjugates (ADC), aiming to provide efficient release and lysosomal efflux of cytotoxic catabolites within targeted cancer cells. ADCs comprising anti-epithelial cell adhesion molecule (anti-EpCAM) and anti-EGFR antibodies with maytansinoid payloads were prepared using CX or a noncleavable SMCC linker (CX and SMCC ADCs). The in vitro cytotoxic activities of CX and SMCC ADCs were similar for several cancer cell lines; however, the CX ADC was more active (5-100-fold lower IC50) than the SMCC ADC in other cell lines, including a multidrug-resistant line. Both CX and SMCC ADCs showed comparable MTDs and pharmacokinetics in CD-1 mice. In Calu-3 tumor xenografts, antitumor efficacy was observed with the anti-EpCAM CX ADC at a 5-fold lower dose than the corresponding SMCC ADC in vivo Similarly, the anti-EGFR CX ADC showed improved antitumor activity over the respective SMCC conjugate in HSC-2 and H1975 tumor models; however, both exhibited similar activity against FaDu xenografts. Mechanistically, in contrast with the charged lysine-linked catabolite of SMCC ADC, a significant fraction of the carboxylic acid catabolite of CX ADC could be uncharged in the acidic lysosomes, and thus diffuse out readily into the cytosol. Upon release from tumor cells, CX catabolites are charged at extracellular pH and do not penetrate and kill neighboring cells, similar to the SMCC catabolite. Overall, these data suggest that CX represents a promising linker option for the development of ADCs with improved therapeutic properties. Mol Cancer Ther; 15(6); 1311-20. ©2016 AACR.


Assuntos
Molécula de Adesão da Célula Epitelial/antagonistas & inibidores , Receptores ErbB/antagonistas & inibidores , Imunoconjugados/administração & dosagem , Maitansina/química , Neoplasias/tratamento farmacológico , Peptídeos/síntese química , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Imunoconjugados/química , Imunoconjugados/farmacocinética , Imunoconjugados/farmacologia , Dose Máxima Tolerável , Camundongos , Camundongos SCID , Peptídeos/química , Peptídeos/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Bioconjug Chem ; 27(7): 1588-98, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27174129

RESUMO

Antibody-drug conjugates (ADCs) have become a widely investigated modality for cancer therapy, in part due to the clinical findings with ado-trastuzumab emtansine (Kadcyla). Ado-trastuzumab emtansine utilizes the Ab-SMCC-DM1 format, in which the thiol-functionalized maytansinoid cytotoxic agent, DM1, is linked to the antibody (Ab) via the maleimide moiety of the heterobifunctional SMCC linker. The pharmacokinetic (PK) data for ado-trastuzumab emtansine point to a faster clearance for the ADC than for total antibody. Cytotoxic agent release in plasma has been reported with nonmaytansinoid, cysteine-linked ADCs via thiol-maleimide exchange, for example, brentuximab vedotin. For Ab-SMCC-DM1 ADCs, however, the main catabolite reported is lysine-SMCC-DM1, the expected product of intracellular antibody proteolysis. To understand these observations better, we conducted a series of studies to examine the stability of the thiol-maleimide linkage, utilizing the EGFR-targeting conjugate, J2898A-SMCC-DM1, and comparing it with a control ADC made with a noncleavable linker that lacked a thiol-maleimide adduct (J2898A-(CH2)3-DM). We employed radiolabeled ADCs to directly measure both the antibody and the ADC components in plasma. The PK properties of the conjugated antibody moiety of the two conjugates, J2898A-SMCC-DM1 and J2898A-(CH2)3-DM (each with an average of 3.0 to 3.4 maytansinoid molecules per antibody), appear to be similar to that of the unconjugated antibody. Clearance values of the intact conjugates were slightly faster than those of the Ab components. Furthermore, J2898A-SMCC-DM1 clears slightly faster than J2898A-(CH2)3-DM, suggesting that there is a fraction of maytansinoid loss from the SMCC-DM1 ADC, possibly through a thiol-maleimide dependent mechanism. Experiments on ex vivo stability confirm that some loss of maytansinoid from Ab-SMCC-DM1 conjugates can occur via thiol elimination, but at a slower rate than the corresponding rate of loss reported for thiol-maleimide links formed at thiols derived by reduction of endogenous cysteine residues in antibodies, consistent with expected differences in thiol-maleimide stability related to thiol pKa. These findings inform the design strategy for future ADCs.


Assuntos
Imunoconjugados/química , Imunoconjugados/farmacocinética , Lisina/química , Maleimidas/química , Maitansina/química , Animais , Estabilidade de Medicamentos , Camundongos , Relação Estrutura-Atividade
18.
MAbs ; 8(3): 513-23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26752675

RESUMO

Antibody-drug conjugates (ADCs) are of great interest as targeted cancer therapeutics. Preparation of ADCs for early stage screening is constrained by purification and biochemical analysis techniques that necessitate burdensome quantities of antibody. Here we describe a method, developed for the maytansinoid class of ADCs, enabling parallel conjugation of antibodies in 96-well format. The method utilizes ∼ 100 µg of antibody per well and requires <5 µg of ADC for characterization. We demonstrate the capabilities of this system using model antibodies. We also provide multiple examples applying this method to early-stage screening of maytansinoid ADCs. The method can greatly increase the throughput with which candidate ADCs can be screened in cell-based assays, and may be more generally applicable to high-throughput preparation and screening of different types of protein conjugates.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Antineoplásicos/farmacologia , Imunoconjugados/farmacologia , Maitansina/farmacologia , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Antineoplásicos/imunologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Imunoconjugados/imunologia , Neoplasias/imunologia
19.
Mol Pharm ; 12(6): 1703-16, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25856201

RESUMO

Coltuximab ravtansine (SAR3419) is an antibody-drug conjugate (ADC) targeting CD19 created by conjugating a derivative of the potent microtubule-acting cytotoxic agent, maytansine, to a version of the anti-CD19 antibody, anti-B4, that was humanized as an IgG1 by variable domain resurfacing. Four different linker-maytansinoid constructs were synthesized (average ∼3.5 maytansinoids/antibody for each) to evaluate the impact of linker-payload design on the activity of the maytansinoid-ADCs targeting CD19. The ADC composed of DM4 (N(2')-deacetyl-N(2')-[4-mercapto-4-methyl-1-oxopentyl]maytansine) conjugated to antibody via the N-succinimidyl-4-(2-pyridyldithio)butyrate (SPDB) linker was selected for development as SAR3419. A molar ratio for DM4/antibody of between 3 and 5 was selected for the final design of SAR3419. Evaluation of SAR3419 in Ramos tumor xenograft models showed that the minimal effective single dose was about 50 µg/kg conjugated DM4 (∼2.5 mg/kg conjugated antibody), while twice this dose gave complete regressions in 100% of the mice. SAR3419 arrests cells in the G2/M phase of the cell cycle, ultimately leading to apoptosis after about 24 h. The results of in vitro and in vivo studies with SAR3419 made with DM4 that was [(3)H]-labeled at the C20 methoxy group of the maytansinoid suggest a mechanism of internalization and intracellular trafficking of SAR3419, ultimately to lysosomes, in which the antibody is fully degraded, releasing lysine-N(ε)-SPDB-DM4 as the initial metabolite. Subsequent intracellular reduction of the disulfide bond between linker and DM4 generates the free thiol species, which is then converted to S-methyl DM4 by cellular methyl transferase activity. We provide evidence to suggest that generation of S-methyl DM4 in tumor cells may contribute to in vivo tumor eradication via bystander killing of neighboring tumor cells. Furthermore, we show that S-methyl DM4 is converted to the sulfoxide and sulfone derivatives in the liver, suggesting that hepatic catabolism of the payload to less cytotoxic maytansinoid species contributes to the overall therapeutic window of SAR3419. This compound is currently in phase II clinical evaluation for the treatment of diffuse large B cell lymphoma.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Maitansina/análogos & derivados , Animais , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacocinética , Antineoplásicos/química , Antineoplásicos/farmacocinética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Fase G2/efeitos dos fármacos , Humanos , Fígado/metabolismo , Linfoma/tratamento farmacológico , Maitansina/química , Maitansina/farmacocinética , Maitansina/uso terapêutico , Camundongos , Camundongos SCID , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cancer Chemother Pharmacol ; 74(5): 969-80, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25186956

RESUMO

PURPOSE: Trastuzumab emtansine (T-DM1), an antibody-drug conjugate (ADC) comprised of trastuzumab linked to the antimitotic agent DM1, has shown promising results in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. Investigations of the mechanisms of the action of ADCs, including T-DM1, have been primarily descriptive or semiquantitative. However, quantitative pharmacokinetic/pharmacodynamic (PK/PD) analysis may provide insights into their complex behavior. The analyses described herein applied PK/PD modeling to nonclinical studies of maytansinoid conjugates. METHODS: The maytansinoid conjugates T-DM1 and T-SPP-DM1, with thioether and disulfide linkers, respectively, were tested in mouse efficacy, PK, and tumor uptake studies. (3)[H]DM1-bearing ADCs were used to facilitate the quantitation of the ADCs in plasma, as well as ADC and ADC catabolites in tumors. Three mechanistic PK/PD models were used to characterize plasma ADC, tumor ADC, and tumor catabolite concentrations. Tumor catabolite concentrations were used to fit tumor response. Model parameters were estimated using R software and nonlinear least squares regression. RESULTS: Plasma ADC-associated DM1 concentrations of T-DM1 decreased more slowly than those of T-SPP-DM1, likely due to slower DM1 release. A comparison of the mechanistic models found that the best model allowed catabolism and catabolite exit rates to differ between ADCs, that T-DM1 exhibited both faster tumor catabolism and catabolite exit rate from tumors than T-SPP-DM1; findings inconsistent with expected behavior based on the physicochemical nature of the respective catabolites. Tumor catabolite concentrations adequately described tumor response with both ADCs showing similar potency. CONCLUSION: Mechanistic PK/PD studies described herein provided results that confirmed and challenged current hypotheses, and suggested new areas of investigation.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Maitansina/análogos & derivados , Modelos Biológicos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Ado-Trastuzumab Emtansina , Algoritmos , Animais , Anticorpos Monoclonais Humanizados/sangue , Área Sob a Curva , Linhagem Celular Tumoral , Feminino , Humanos , Maitansina/sangue , Maitansina/farmacocinética , Camundongos Nus , Trastuzumab , Resultado do Tratamento , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA