Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 11: 545414, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162974

RESUMO

Neonatal hemophagocytic lymphohistiocytosis (HLH) is a medical emergency that can be associated with significant morbidity and mortality. Often these patients present with familial HLH (f-HLH), which is caused by gene mutations interfering with the cytolytic pathway of cytotoxic T-lymphocytes (CTLs) and natural killer cells. Here we describe a male newborn who met the HLH diagnostic criteria, presented with profound cholestasis, and carried a maternally inherited heterozygous mutation in syntaxin-binding protein-2 [STXBP2, c.568C>T (p.Arg190Cys)] in addition to a severe pathogenic variant in glucose 6-phosphate dehydrogenase [G6PD, hemizygous c.1153T>C (Cys385Arg)]. Although mutations in STXBP2 gene are associated with f-HLH type 5, the clinical and biological relevance of the p.Arg190Cys mutation identified in this patient was uncertain. To assess its role in disease pathogenesis, we performed functional assays and biochemical and microscopic studies. We found that p.Arg190Cys mutation did not alter the expression or subcellular localization of STXBP2 or STX11, neither impaired the STXBP2/STX11 interaction. In contrast, forced expression of the mutated protein into normal CTLs strongly inhibited degranulation and reduced the cytolytic activity outcompeting the effect of endogenous wild-type STXBP2. Interestingly, arginine 190 is located in a structurally conserved region of STXBP2 where other f-HLH-5 mutations have been identified. Collectively, data strongly suggest that STXBP2-R190C is a deleterious variant that may act in a dominant-negative manner by probably stabilizing non-productive interactions between STXBP2/STX11 complex and other still unknown factors such as the membrane surface or Munc13-4 protein and thus impairing the release of cytolytic granules. In addition to the contribution of STXBP2-R190C to f-HLH, the accompanied G6PD mutation may have compounded the clinical symptoms; however, the extent by which G6PD deficiency has contributed to HLH in our patient remains unclear.


Assuntos
Exocitose/genética , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/genética , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfo-Histiocitose Hemofagocítica/genética , Proteínas Munc18/genética , Mutação , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Apoptose/genética , Apoptose/imunologia , Biomarcadores , Citotoxicidade Imunológica , Suscetibilidade a Doenças , Expressão Gênica , Estudos de Associação Genética , Deficiência de Glucosefosfato Desidrogenase/complicações , Humanos , Recém-Nascido , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Linfo-Histiocitose Hemofagocítica/complicações , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Proteínas Munc18/química , Proteínas Munc18/metabolismo , Conformação Proteica , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Relação Estrutura-Atividade , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
3.
Hepatology ; 47(5): 1567-77, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18393301

RESUMO

UNLABELLED: Biliary atresia is a fibro-inflammatory cholangiopathy that obstructs the extrahepatic bile ducts in young infants. Although the pathogenesis of the disease is undefined, studies in livers from affected children and neonatal mice with experimental biliary atresia have shown increased expression of proapoptosis molecules. Therefore, we hypothesized that apoptosis is a significant mechanism of injury to duct epithelium. To test this hypothesis, we quantified apoptosis using terminal transferase dUTP nick end labeling and active caspase-3 staining in livers and extrahepatic bile ducts from Balb/c mice infected with Rhesus rotavirus (RRV) within 24 hours of birth. RRV induced a significant increase in labeled cells in the portal tracts and in epithelial and subepithelial compartments of extrahepatic bile ducts, with onset within 3 days and peaks at 5-10 days. Exploring mechanisms of injury, we found increased biliary expression of caspases 1 and 4 and of interferon-gamma (IFNgamma)-related and tumor necrosis factor-alpha (TNFalpha)-related genes. Using a cholangiocyte cell line, we found that neither IFNgamma nor TNFalpha alone affected cell viability; however, simultaneous exposure to IFNgamma and TNFalpha activated caspase-3 and decreased cell viability. Inhibition of caspase activity blocked apoptosis and restored viability to cultured cholangiocytes. In vivo, administration of the caspase inhibitor IDN-8050 decreased apoptosis in the duct epithelium and the extent of epithelial injury after RRV challenge. CONCLUSION: The biliary epithelium undergoes early activation of apoptosis in a mouse model of biliary atresia. The synergistic role of IFNgamma and TNFalpha in activating caspase-3 in cholangiocytes and the decreased apoptosis following pharmacologic inhibition of caspases support a prominent role for apoptosis in the pathogenesis of experimental biliary atresia.


Assuntos
Atresia Biliar/patologia , Células Epiteliais/patologia , Animais , Apoptose , Atresia Biliar/genética , Sobrevivência Celular , Primers do DNA , Modelos Animais de Doenças , Marcação In Situ das Extremidades Cortadas , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase , Rotavirus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA