Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 106(5): 1341-1349, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34907800

RESUMO

Septoria tritici blotch (STB) is among the most devastating diseases in European wheat production. In recent years, there has been increased interest in using cultivar mixtures as part of an integrated control strategy against diseases. This study investigated different cultivar mixtures for their ability to control STB across three years and at seven trial sites in Denmark with a range of fungicide strategies, yielding a total of 194 individual cultivar mixture combinations. The mixtures were composed of two, three, or four cultivars that were either similar or contrasting in their susceptibility to STB. Across all trials, the cultivar mixtures reduced disease severity significantly, by 14% compared with the component cultivars grown in monoculture. The reductions were larger when the disease pressure was high and when the mixtures included more cultivars. Mixtures composed of four cultivars reduced disease severity significantly, by 24%. Across all trials, cultivar mixtures significantly increased yield by 2% compared with the component cultivars grown in monoculture. The yield increase was significant for plots treated with one or two fungicide applications, and cultivar mixtures increased yield significantly, by 4.4% in untreated plots. The yield increase was smaller for mixtures with a high proportion of resistant cultivars. Based on the results from this study, cultivar mixtures can contribute positively to an integrated pest management (IPM) strategy, by reducing disease severity for STB and increasing yield. The most pronounced benefits from cultivar mixtures were found in fields with moderate to low fungicide input, under conditions with high disease pressure, when combining four cultivars with varying susceptibilities.


Assuntos
Ascomicetos , Fungicidas Industriais , Fungicidas Industriais/farmacologia , Doenças das Plantas/prevenção & controle , Triticum
2.
Plant Genome ; 13(3): e20049, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33217208

RESUMO

Patterns and level of cytosine methylation vary widely among plant species and are associated with genome size as well as the proportion of transposons and other repetitive elements in the genome. We explored epigenetic patterns and diversity in a representative proportion of the spring barley (Hordeum vulgare L.) genome across several commercial and historical cultivars. This study adapted a genotyping-by-sequencing (GBS) approach for the detection of methylated cytosines in genomic DNA. To analyze the data, we developed WellMeth, a complete pipeline for analysis of reduced representation bisulfite sequencing. WellMeth enabled quantification of context-specific DNA methylation at the single-base resolution as well as identification of differentially methylated sites (DMCs) and regions (DMRs). On average, DNA methylation levels were significantly higher than what is commonly observed in many plants species, reaching over 10-fold higher levels than those in Arabidopsis thaliana (L.) Heynh. in the CHH methylation. Preferential methylation was observed within and at the edges of long-terminal repeats (LTR) retrotransposons Gypsy and Copia. From a pairwise comparison of cultivars, numerous DMRs could be identified of which more than 5,000 were conserved within the analyzed set of barley cultivars. The subset of regions overlapping with genes showed enrichment in gene ontology (GO) categories associated with chromatin and cellular structure and organization. A significant correlation between genetic and epigenetic distances suggests that a considerable portion of methylated regions is under strict genetic control in barley. The data presented herein represents the first step in efforts toward a better understanding of genome-level structural and functional aspects of methylation in barley.


Assuntos
Metilação de DNA , Hordeum , Citosina , Hordeum/genética , Sulfitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA