Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(12): 8598-607, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26949128

RESUMO

Degradation of the materials in dye-sensitized solar cells at elevated temperatures is critical for use in real applications. Both during fabrication of the solar cell and under real working conditions the solar cells will be exposed to heat. In this work, mesoporous TiO2 electrodes sensitized with the dyes D35 and K77 were subject to heat-treatment and the effects of this were thereafter investigated by photoelectron spectroscopy. For D35 it was found that heat-treatment changes the binding configuration inducing an increased interaction between the sulfur of the linker unit and the TiO2 surface. The interaction resulting from the change in binding configuration also affects the position of the HOMO level, where a shift of +0.2 eV is observed when heated to 200 °C. For K77, parts of the thiocyanate units are detached and the nitrogen atom leaves the electrode whereas sulfur remains on the surface in various forms of sulfurous oxides. The total dye coverage of K77 gets reduced by heat-treatment. The HOMO level gets progressively less pronounced due to a loss of HOMO level electrons as a consequence of the lower dye coverage when heat-treated, which leads to a lower excitation rate and lower efficiency. The results are discussed in the context of performance for dye-sensitized solar cells.

2.
Phys Chem Chem Phys ; 18(1): 252-60, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26608268

RESUMO

The effects of alkoxy chain length in triarylamine based donor-acceptor organic dyes are investigated with respect to the electronic and molecular surface structures on the performance of solar cells and the electron lifetime. The dyes were investigated when adsorbed on TiO2 in a configuration that can be used for dye-sensitized solar cells (DSCs). Specifically, the two dyes D35 and D45 were compared using photoelectron spectroscopy (PES) and density functional theory (DFT) calculations. The differences in solar cell characteristics when longer alkoxy chains are introduced in the dye donor unit are attributed to geometrical changes in dye packing while only minor differences were observed in the electronic structure. A higher dye load was observed for D45 on TiO2. However, D35 based solar cells result in higher photocurrent although the dye load is lower. This is explained by different geometrical structures of the dyes on the surface.

3.
Phys Chem Chem Phys ; 17(26): 16744-51, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26061451

RESUMO

Dye-sensitized mesoporous TiO2 films have been widely applied in energy and environmental science related research fields. The interaction between accumulated electrons inside TiO2 and cations in the surrounding electrolyte at the TiO2/dye/electrolyte interface is, however, still poorly understood. This interaction is undoubtedly important for both device performance and fundamental understanding. In the present study, Stark effects of an organic dye, LEG4, adsorbed on TiO2 were well characterized and used as a probe to monitor the local electric field at the TiO2/dye/electrolyte interface. By using time-resolved photo- and potential-induced absorption techniques, we found evidence for a slow (t > 0.1 s) local charge compensation mechanism, which follows electron accumulation inside the mesoporous TiO2. This slow local compensation was attributed to the penetration of cations from the electrolyte into the adsorbed dye layer, leading to a more localized charge compensation of the electrons inside TiO2. Importantly, when the electrons inside TiO2 were extracted, a remarkable reversal of the surface electric field was observed for the first time, which is attributed to the penetrated and/or adsorbed cations now being charge compensated by anions in the bulk electrolyte. A cation electrosorption model is developed to account for the overall process. These findings give new insights into the mesoporous TiO2/dye/electrolyte interface and the electron-cation interaction mechanism. Electrosorbed cations are proposed to act as electrostatic trap states for electrons in the mesoporous TiO2 electrode.

4.
J Chromatogr A ; 1317: 105-9, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24054126

RESUMO

A recently developed titanium dioxide (TiO2) based on-target method for phosphopeptide enrichment and matrix assisted laser desorption-ionization mass spectrometry (MALDI MS) analysis was used to investigate phosphorylations in the Adenovirus type 2 structural protein pIIIa. Lysates of purified virus particles were separated on 1-D SDS-PAGE and the band for the pIIIa protein was excised for tryptic digestion into peptides that were enriched with the on-target method. The enrichment provided by the method clearly improved the detectability of phosphorylated peptides and the results show for the first time evidence for multi-phosphorylated peptides in pIIIa. Moreover, three novel phosphorylations were identified in the protein sequence, even though the precise positions could not be determined. These results illustrate the potential of the method for the characterization of novel phosphoproteomes in biological samples of medical relevance.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/isolamento & purificação , Fosfopeptídeos/química , Fosfopeptídeos/isolamento & purificação , Titânio/química , Proteínas do Capsídeo/análise , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/isolamento & purificação , Fosfopeptídeos/análise , Fosforilação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tripsina
5.
J Phys Chem B ; 117(7): 2019-25, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23327360

RESUMO

The rapidly growing field of phosphoproteomics has led to a strong demand for procedures enabling fast and reliable isolation and enrichment of phosphorylated proteins and peptides. During the past decade, several novel phosphopeptide enrichment methods based on the affinity of phosphoryl groups for titanium dioxide (TiO(2)) have been developed and tested. The ultimate goal of obtaining comprehensive phosphoproteomes has, however, been found difficult to achieve and the obtained results often vary, dependent on the enrichment method and protocol used. In the present study, the physical chemistry of the phosphopeptide binding to TiO(2) is investigated by means of measurements using a quartz crystal microbalance with dissipation monitoring (QCM-D). Special emphasis is put on the effect of the degree of phosphorylation of the phosphopeptide, the impact of the primary amino acid structure, and the role of electrostatic interactions. The results show that, in general, adsorption of phosphopeptides follows the Langmuir model and that the affinity for the TiO(2) surface increases in a nonlinear fashion with increasing degree of phosphorylation. An exception was detected, however, where positive cooperativity between the peptides existed and the Langmuir model no longer applied. The source behind the cooperativity could be traced back to the primary amino acid structure and, more specifically, the presence of positively charged amino acids in positions that enable electrostatic interaction with phosphoryl groups on neighboring peptides. Regardless of the net peptide charge, the TiO(2)-phosphopeptide interaction was for all phosphopeptides investigated found to be mainly of electrostatic origin. This study highlights and explains some of the most common problems with the TiO(2)-based enrichment methods used today.


Assuntos
Fosfopeptídeos/química , Titânio/química , Adsorção , Sequência de Aminoácidos , Cinética , Fosfopeptídeos/metabolismo , Fosforilação , Técnicas de Microbalança de Cristal de Quartzo , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA