Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Evol Appl ; 16(2): 530-541, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36793681

RESUMO

The Centre for Marine Evolutionary Biology (CeMEB) at the University of Gothenburg, Sweden, was established in 2008 through a 10-year research grant of 8.7 m€ to a team of senior researchers. Today, CeMEB members have contributed >500 scientific publications, 30 PhD theses and have organised 75 meetings and courses, including 18 three-day meetings and four conferences. What are the footprints of CeMEB, and how will the centre continue to play a national and international role as an important node of marine evolutionary research? In this perspective article, we first look back over the 10 years of CeMEB activities and briefly survey some of the many achievements of CeMEB. We furthermore compare the initial goals, as formulated in the grant application, with what has been achieved, and discuss challenges and milestones along the way. Finally, we bring forward some general lessons that can be learnt from a research funding of this type, and we also look ahead, discussing how CeMEB's achievements and lessons can be used as a springboard to the future of marine evolutionary biology.

2.
Sci Rep ; 10(1): 7781, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385382

RESUMO

American lobsters (Homarus americanus) imported live into Europe as a seafood commodity have occasionally been released or escaped into the wild, within the range of an allopatric congener, the European lobster (H. gammarus). In addition to disease and competition, introduced lobsters threaten native populations through hybridisation, but morphological discriminants used for species identification are unable to discern hybrids, so molecular methods are required. We tested an array of 79 single nucleotide polymorphisms (SNPs) for their utility to distinguish 1,308 H. gammarus from 38 H. americanus and 30 hybrid offspring from an American female captured in Sweden. These loci provide powerful species assignment in Homarus, enabling the robust identification of hybrid and American individuals among a survey of European stock. Moreover, a subset panel of the 12 most powerful SNPs is sufficient to separate the two pure species, even when tissues have been cooked, and can detect the introduced component of hybrids. We conclude that these SNP loci can unambiguously identify hybrid lobsters that may be undetectable via basic morphology, and offer a valuable tool to investigate the prevalence of cryptic hybridisation in the wild. Such investigations are required to properly evaluate the potential for introgression of alien genes into European lobster populations.


Assuntos
Cruzamentos Genéticos , Hibridização Genética , Nephropidae/genética , Alelos , Animais , Cruzamento , Europa (Continente) , Genótipo , Nephropidae/classificação , Polimorfismo de Nucleotídeo Único
3.
Proc Biol Sci ; 283(1828)2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27053741

RESUMO

Elevated carbon dioxide levels and the resultant ocean acidification (OA) are changing the abiotic conditions of the oceans at a greater rate than ever before and placing pressure on marine species. Understanding the response of marine fauna to this change is critical for understanding the effects of OA. Population-level variation in OA tolerance is highly relevant and important in the determination of ecosystem resilience and persistence, but has received little focus to date. In this study, whether OA has the same biological consequences in high-salinity-acclimated population versus a low-salinity-acclimated population of the same species was investigated in the marine isopod Idotea balthica.The populations were found to have physiologically different responses to OA. While survival rate was similar between the two study populations at a future CO2 level of 1000 ppm, and both populations showed increased oxidative stress, the metabolic rate and osmoregulatory activity differed significantly between the two populations. The results of this study demonstrate that the physiological response to OA of populations from different salinities can vary. Population-level variation and the environment provenance of individuals used in OA experiments should be taken into account for the evaluation and prediction of climate change effects.


Assuntos
Dióxido de Carbono/química , Isópodes/fisiologia , Salinidade , Água do Mar/química , Aclimatação , Animais , Mudança Climática , Feminino , Concentração de Íons de Hidrogênio , Masculino , Mar do Norte
4.
Aquat Toxicol ; 167: 31-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26254768

RESUMO

In the oceans, naturally occurring manganese (Mn) is released from the sediments during events of hypoxia. While neuro- and immuno-toxic effects of bioavailable manganese are well documented for crustaceans, studies of similar effects of manganese on other marine invertebrates are comparatively few. Here, we developed a new functional test "the repeated turning assay" to investigate if manganese exposure at ∼12 mg L(-1) affected motoric behaviour of two asteroid echinoderms, the Common sea star, Asterias rubens, and the Black brittle star, Ophiocomina nigra. By measuring of the turning-over capacity, from dorsal to ventral position, after one and two weeks of manganese exposure, we showed that for both species Mn exposure significantly delayed the ability to turn. After a recovery period of two weeks, the capacity of turning-over was not restored to that of unexposed animals neither for A. rubens nor for O. nigra. Further investigation of sea stars showed that Mn accumulated ∼5 fold in the tube feet, organs involved in their turning-over activity, and the high concentration remained after the recovery period. In the tube feet we also recorded an increased activity of acetylcholinesterase (AChE), here used as a proxy for neuromuscular disturbances. The results indicated that Mn induces neuromuscular disturbance in echinoderms which is important news, given that previous studies have concluded that adult echinoderms are relatively tolerant to Mn.


Assuntos
Asterias/efeitos dos fármacos , Manganês/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Atividade Motora/efeitos dos fármacos , Oceanos e Mares
5.
Adv Mar Biol ; 64: 149-200, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23668590

RESUMO

The Norway lobster Nephrops norvegicus lives at low-light depths, in muddy substrata of high organic content where water salinities are high and fluctuations in temperature are moderate. In this environment, the lobsters are naturally exposed to a number of potential stressors, many of them as a result of the surficial breakdown of organic material in the sediment. This process (early diagenesis) creates a heterogeneous environment with temporal and spatial fluctuations in a number of compounds such as oxygen, ammonia, metals, and hydrogen sulphide. In addition to this, there are anthropogenically generated stressors, such as human-induced climate change (resulting in elevated temperature and ocean acidification), pollution and fishing. The lobsters are thus exposed to several stressors, which are strongly linked to the habitat in which the animals live. Here, the capacity of Nephrops to deal with these stressors is summarised. Eutrophication-induced hypoxia and subsequent metal remobilisation from the sediment is a well-documented effect found in some wild Nephrops populations. Compared to many other crustacean species, Nephrops is well adapted to tolerate periods of hypoxia, but prolonged or severe hypoxia, beyond their tolerance level, is common in some areas. When the oxygen concentration in the environment decreases, the bioavailability of redox-sensitive metals such as manganese increases. Manganese is an essential metal, which, taken up in excess, has a toxic effect on several internal systems such as chemosensitivity, nerve transmission and immune defence. Since sediment contains high concentrations of metals in comparison to sea water, lobsters may accumulate both essential and non-essential metals. Different metals have different target tissues, though the hepatopancreas, in general, accumulates high concentrations of most metals. The future scenario of increasing anthropogenic influences on Nephrops habitats may have adverse effects on the fitness of the animals.


Assuntos
Decápodes/imunologia , Decápodes/fisiologia , Estresse Fisiológico/fisiologia , Animais , Mudança Climática , Decápodes/microbiologia , Ecossistema , Monitoramento Ambiental , Feminino , Pesqueiros , Interações Hospedeiro-Patógeno , Atividades Humanas , Masculino , Estresse Fisiológico/efeitos dos fármacos , Temperatura , Poluentes Químicos da Água
6.
Adv Mar Biol ; 64: 201-45, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23668591

RESUMO

Nephrops norvegicus represents a very valuable fishery across Europe, and the species possesses a relatively complex life cycle and reproductive biology across spatial and temporal scales. Insights into embryonic and larval biology, and associated abiotic and biotic factors that influence recruitment, are important since this will affect population and species success. Much of the fishery, and indeed scientific sampling, is reliant on trawling, which is likely to cause direct and indirect stresses on adults and developing embryos. We have collated evidence, including that garnered from laboratory studies, to assess the likely effects on reproduction and population. Using know-how from hatchery operations in similar species such as Homarus sp., we also seek to optimise larviculture that could be commercialised to create a hatchery and thus assist stock remediation. This review chapter is therefore divided into three sections: (1) general N. norvegicus reproductive biology, (2) life cycle and larval biology and (3) a comprehensive review of all rearing attempts for this species to date, including a likely way forward for pilot scale and hence commercial restocking operations.


Assuntos
Decápodes/crescimento & desenvolvimento , Decápodes/fisiologia , Estágios do Ciclo de Vida/fisiologia , Animais , Larva/crescimento & desenvolvimento , Larva/fisiologia , Reprodução/fisiologia , Maturidade Sexual
7.
Ecol Evol ; 3(15): 5055-65, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24455136

RESUMO

Due to anthropogenic CO2 emissions, our oceans have gradually become warmer and more acidic. To better understand the consequences of this, there is a need for long-term (months) and multistressor experiments. Earlier research demonstrates that the effects of global climate change are specific to species and life stages. We exposed berried Norway lobsters (Nephrops norvegicus), during 4 months to the combination of six ecologically relevant temperatures (5-18°C) and reduced pH (by 0.4 units). Embryonic responses were investigated by quantifying proxies for development rate and fitness including: % yolk consumption, mean heart rate, rate of oxygen consumption, and oxidative stress. We found no interactions between temperature and pH, and reduced pH only affected the level of oxidative stress significantly, with a higher level of oxidative stress in the controls. Increased temperature and % yolk consumed had positive effects on all parameters except on oxidative stress, which did not change in response to temperature. There was a difference in development rate between the ranges of 5-10°C (Q 10: 5.4) and 10-18°C (Q 10: 2.9), implicating a thermal break point at 10°C or below. No thermal limit to a further increased development rate was found. The insensitivity of N. norvegicus embryos to low pH might be explained by adaptation to a pH-reduced external habitat and/or internal hypercapnia during incubation. Our results thus indicate that this species would benefit from global warming and be able to withstand the predicted decrease in ocean pH in the next century during their earliest life stages. However, future studies need to combine low pH and elevated temperature treatments with hypoxia as hypoxic events are frequently and increasingly occurring in the habitat of benthic species.

8.
Nature ; 443(7107): 93-6, 2006 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16957731

RESUMO

Benthic foraminifera are unicellular eukaryotes found abundantly in many types of marine sediments. Many species survive and possibly reproduce in anoxic habitats, but sustainable anaerobic metabolism has not been previously described. Here we demonstrate that the foraminifer Globobulimina pseudospinescens accumulates intracellular nitrate stores and that these can be respired to dinitrogen gas. The amounts of nitrate detected are estimated to be sufficient to support respiration for over a month. In a Swedish fjord sediment where G. pseudospinescens is the dominant foraminifer, the intracellular nitrate pool in this species accounted for 20% of the large, cell-bound, nitrate pool present in an oxygen-free zone. Similarly high nitrate concentrations were also detected in foraminifera Nonionella cf. stella and a Stainforthia species, the two dominant benthic taxa occurring within the oxygen minimum zone of the continental shelf off Chile. Given the high abundance of foraminifera in anoxic marine environments, these new findings suggest that foraminifera may play an important role in global nitrogen cycling and indicate that our understanding of the complexity of the marine nitrogen cycle is far from complete.


Assuntos
Células Eucarióticas/metabolismo , Nitritos/metabolismo , Anaerobiose , Archaea/genética , Chile , Células Eucarióticas/ultraestrutura , Sedimentos Geológicos/química , Nitrogênio/metabolismo , Oxigênio/metabolismo , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA