Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Harmful Algae ; 126: 102440, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37290887

RESUMO

Cyanobacterial harmful algal blooms (cyanoHABs) dominated by Microcystis spp. have significant public health and economic implications in freshwater bodies around the world. These blooms are capable of producing a variety of cyanotoxins, including microcystins, that affect fishing and tourism industries, human and environmental health, and access to drinking water. In this study, we isolated and sequenced the genomes of 21 primarily unialgal Microcystis cultures collected from western Lake Erie between 2017 and 2019. While some cultures isolated in different years have a high degree of genetic similarity (genomic Average Nucleotide Identity >99%), genomic data show that these cultures also represent much of the breadth of known Microcystis diversity in natural populations. Only five isolates contained all the genes required for microcystin biosynthesis while two isolates contained a previously described partial mcy operon. Microcystin production within cultures was also assessed using Enzyme-Linked Immunosorbent Assay (ELISA) and supported genomic results with high concentrations (up to 900 µg L⁻¹) in cultures with complete mcy operons and no or low toxin detected otherwise. These xenic cultures also contained a substantial diversity of bacteria associated with Microcystis, which has become increasingly recognized as an essential component of cyanoHAB community dynamics. These results highlight the genomic diversity among Microcystis strains and associated bacteria in Lake Erie, and their potential impacts on bloom development, toxin production, and toxin degradation. This culture collection significantly increases the availability of environmentally relevant Microcystis strains from temperate North America.


Assuntos
Cianobactérias , Microbiota , Microcystis , Humanos , Microcystis/genética , Lagos/microbiologia , Cianobactérias/genética , Variação Genética
3.
Sci Data ; 10(1): 100, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797273

RESUMO

The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount of in situ data to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. In addition, at least one co-located water quality measurement of chlorophyll a, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The data were contributed by researchers affiliated with 59 institutions worldwide and come from 450 different water bodies, making GLORIA the de-facto state of knowledge of in situ coastal and inland aquatic optical diversity. Each measurement is documented with comprehensive methodological details, allowing users to evaluate fitness-for-purpose, and providing a reference for practitioners planning similar measurements. We provide open and free access to this dataset with the goal of enabling scientific and technological advancement towards operational regional and global RSWQ monitoring.

4.
Toxins (Basel) ; 13(12)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34941740

RESUMO

Harmful algal blooms (HABs) are increasing globally in frequency, persistence, and geographic extent, posing a threat to ecosystem and human health. To date, no occurrences of marine phycotoxins have been recorded in Mozambique, which may be due to absence of a monitoring program and general awareness of potential threats. This study is the first documentation of neurotoxin, domoic acid (DA), produced by the diatom Pseudo-nitzschia along the east coast of Africa. Coastal Inhambane Province is a biodiversity hotspot where year-round Rhincodon typus (whale shark) sightings are among the highest globally and support an emerging ecotourism industry. Links between primary productivity and biodiversity in this area have not previously been considered or reported. During a pilot study, from January 2017 to April 2018, DA was identified year-round, peaking during Austral winter. During an intense study between May and August 2018, our research focused on identifying environmental factors influencing coastal productivity and DA concentration. Phytoplankton assemblage was diatom-dominated, with high abundances of Pseudo-nitzschia spp. Data suggest the system was influenced by nutrient pulses resulting from coastal upwelling. Continued and comprehensive monitoring along southern Mozambique would provide critical information to assess ecosystem and human health threats from marine toxins under challenges posed by global change.


Assuntos
Diatomáceas/metabolismo , Ácido Caínico/análogos & derivados , Movimentos da Água , Ecossistema , Monitoramento Ambiental , Oceano Índico , Ácido Caínico/metabolismo , Ácido Caínico/toxicidade , Moçambique , Fitoplâncton
5.
Harmful Algae ; 108: 102080, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34588116

RESUMO

Monitoring of cyanobacterial bloom biomass in large lakes at high resolution is made possible by remote sensing. However, monitoring cyanobacterial toxins is only feasible with grab samples, which, with only sporadic sampling, results in uncertainties in the spatial distribution of toxins. To address this issue, we conducted two intensive "HABs Grabs" of microcystin (MC)-producing Microcystis blooms in the western basin of Lake Erie. These were one-day sampling events during August of 2018 and 2019 in which 100 and 172 grab samples were collected, respectively, within a six-hour window covering up to 2,270 km2 and analyzed using consistent methods to estimate the total mass of MC. The samples were analyzed for 57 parameters, including toxins, nutrients, chlorophyll, and genomics. There were an estimated 11,513 kg and 30,691 kg of MCs in the western basin during the 2018 and 2019 HABs Grabs, respectively. The bloom boundary poses substantial issues for spatial assessments because MC concentration varied by nearly two orders of magnitude over very short distances. The MC to chlorophyll ratio (MC:chl) varied by a factor up to 5.3 throughout the basin, which creates challenges for using MC:chl to predict MC concentrations. Many of the biomass metrics strongly correlated (r > 0.70) with each other except chlorophyll fluorescence and phycocyanin concentration. While MC and chlorophyll correlated well with total phosphorus and nitrogen concentrations, MC:chl correlated with dissolved inorganic nitrogen. More frequent MC data collection can overcome these issues, and models need to account for the MC:chl spatial heterogeneity when forecasting MCs.


Assuntos
Cianobactérias , Microcystis , Proliferação Nociva de Algas , Lagos , Fósforo
6.
Environ Microbiol ; 23(12): 7278-7313, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34056822

RESUMO

Microcystis is a cyanobacterium that forms toxic blooms in freshwater ecosystems around the world. Biological variation among taxa within the genus is apparent through genetic and phenotypic differences between strains and via the spatial and temporal distribution of strains in the environment, and this fine-scale diversity exerts strong influence over bloom toxicity. Yet we do not know how varying traits of Microcystis strains govern their environmental distribution, the tradeoffs and links between these traits, or how they are encoded at the genomic level. Here we synthesize current knowledge on the importance of diversity within Microcystis and on the genes and traits that likely underpin ecological differentiation of taxa. We briefly review spatial and environmental patterns of Microcystis diversity in the field and genetic evidence for cohesive groups within Microcystis. We then compile data on strain-level diversity regarding growth responses to environmental conditions and explore evidence for variation of community interactions across Microcystis strains. Potential links and tradeoffs between traits are identified and discussed. The resulting picture, while incomplete, highlights key knowledge gaps that need to be filled to enable new models for predicting strain-level dynamics, which influence the development, toxicity and cosmopolitan nature of Microcystis blooms.


Assuntos
Cianobactérias , Microcystis , Ecossistema , Microcystis/genética
8.
J Phycol ; 49(1): 143-55, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27008396

RESUMO

A new planktonic species of Prorocentrum is described from the Gulf of Mexico. First observed with the Imaging FlowCytobot, Prorocentrum texanum sp. nov. was characterized using LM, SEM, and TEM along with sequencing of the SSU, LSU, and ITS ribosomal regions and the mitochondrial cob and cox1 regions. P. texanum sp. nov. is a round to oval bivalvate dinoflagellate, with a prominent anterior, serrated solid flange on periflagellar a platelet and an opposing short, flat flange on the h platelet. The periflagellar area consists of 10 platelets. Both left and right valves have shallow round depressions and two-sized valve pores. The anterior ejectosome pore pattern differs between the left and right valve in relation to the periflagellar area and margins. Ten to eleven rows of tangential ejectosome pores are present on each valve. P. texanum sp. nov. has two varieties which exhibit distinct morphotypes, one round to oval (var. texanum) and the other pointed (var. cuspidatum). P. texanum var. cuspidatum is morphologically similar to P. micans in surface markings, but is smaller, and has a serrated periflagellar flange, and is genetically distinct from P. micans. Cytologically, P. texanum has two parietal chlo-roplasts, each with a compound, interlamellar pyrenoid, trichocysts, fibrous vesicles that resemble mucocysts, pusules, V- to U-shaped posterior nucleus, golgi, and tubular mitochondria. No genetic difference was found between the two varieties in the five genes examined. Phylogenetic analysis of the SSU, LSU, and ITS ribosomal regions place P. texanum sp. nov. as a sister group to P. micans. One isolate of P. texanum var. texanum produces okadaic acid.

9.
Proc Natl Acad Sci U S A ; 108(26): 10597-601, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21670286

RESUMO

With the increase in frequency of harmful algal blooms (HABs) worldwide, a better understanding of the mechanisms that influence toxin production is needed. Karenia brevis, the major HAB dinoflagellate in the Gulf of Mexico, produces potent neurotoxins, known as brevetoxins. Human health is directly impacted by blooms of K. brevis through consumption of shellfish contaminated by accumulated brevetoxins (neurotoxic shellfish poisoning) or from aerosolized brevetoxins in sea spray (reduced respiratory function); however, the reason for brevetoxin production has remained a mystery. Here we show that brevetoxin production increased dramatically in response to osmotic stress in three of the four K. brevis clones examined. By rapidly changing salinity to simulate a shift from oceanic conditions to a decreased salinity typical of coastal conditions, brevetoxin production was triggered. As a result, brevetoxin cell quota increased by >14-fold, while growth rate remained unchanged. Live images of K. brevis cells were also examined to assess changes in cell volume. In the K. brevis Wilson clone, cells responded quickly to hypoosmotic stress by increasing their brevetoxin cell quota from ∼10 to 160 pg of brevetoxin per cell, while cell volume remained stable. In contrast, the K. brevis SP1 clone, which has a consistently low brevetoxin cell quota (<1 pg per cell), was unable to balance the hypoosmotic stress, and although brevetoxin production remained low, average cell volume increased. Our findings close a critical gap in knowledge regarding mechanisms for toxin production in K. brevis by providing an explanation for toxin production in this harmful dinoflagellate.


Assuntos
Dinoflagellida/metabolismo , Pressão Osmótica , Toxinas Biológicas/biossíntese , Dinoflagellida/fisiologia
10.
Toxicon ; 55(2-3): 195-203, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19631681

RESUMO

Karenia brevis, the major harmful algal (HA) species in the Gulf of Mexico, produces a suite of brevetoxins and brevenal, a nontoxic brevetoxin antagonist. K. brevis growth is reported to be optimum at oceanic conditions, yet blooms are most problematic in coastal waters. Differences in growth rate, total brevetoxin production, brevetoxin profiles and brevenal production were evaluated among eight K. brevis clones grown at salinities of 35 and 27, but otherwise identical conditions. All measured parameters varied significantly among clones and the individual responses to decreased salinity varied as well. At 27, growth rates of four clones increased (Wilson, TXB3, SP1 and SP2), but decreased in three others (TXB4, SP3 and NBK) as compared to 35. Total brevetoxin cellular concentration varied up to approximately ten-fold among clones. For most clones (5 of 8), no significant difference in total toxin production between salinity treatments was observed; however, there was a shift in brevetoxin profiles to a higher proportion of PbTx-1 vs. PbTx-2 (in 7 of 8 clones). Brevenal production decreased in the majority of the clones (6 of 8) when grown at a salinity of 27. Results suggest that K. brevis produces more PbTx-1 and less brevenal in lower salinity waters.


Assuntos
Dinoflagellida/metabolismo , Éteres/metabolismo , Eutrofização , Toxinas Marinhas/metabolismo , Oxocinas/metabolismo , Polímeros/metabolismo , Oceano Atlântico , Cromatografia Líquida de Alta Pressão , Células Clonais , Dinoflagellida/crescimento & desenvolvimento , Dinoflagellida/fisiologia , Éteres/química , Toxinas Marinhas/química , Espectrometria de Massas , Oxocinas/química , Polímeros/química , Salinidade , Água do Mar/química , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta
11.
Water Res ; 41(12): 2503-12, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17467032

RESUMO

Prymnesium parvum is a harmful alga whose blooms can cause fish kills in brackish waters. Two potential suppressants of this alga were tested, ammonium and barley straw extract (BSE), at temperatures of 10, 20 and 30 degrees C. Laboratory batch cultures were grown for 3 weeks at each temperature, with weekly doses of ammonium or BSE at either low or high levels, or a no-dose control treatment. The growth rate of P. parvum during exponential phase was highest at 20 degrees C and lowest at 10 degrees C, and was stimulated by the highest ammonium dose. Only cultures grown at 20 degrees C were toxic to fish. The highest ammonium dose abolished such toxicity and reduced the endpoint population density of P. parvum. BSE did not reduce the exponential growth rate, endpoint density, or toxicity to fish of P. parvum. The results support the use of ammonium additions, but not BSE, to suppress harmful blooms of P. parvum in those circumstances where the possible disadvantages can be managed.


Assuntos
Cyprinidae , Eucariotos/efeitos dos fármacos , Hordeum/química , Toxinas Marinhas/toxicidade , Compostos de Amônio Quaternário/farmacologia , Animais , Clorofila/metabolismo , Clorofila A , Eucariotos/crescimento & desenvolvimento , Eucariotos/metabolismo , Concentração de Íons de Hidrogênio , Extratos Vegetais/farmacologia , Temperatura , Testes de Toxicidade Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA