Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuro Oncol ; 18(9): 1278-87, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26951380

RESUMO

BACKGROUND: Higher-grade meningiomas (HGMs; World Health Organization grades II and III) pose a clinical problem due to high recurrence rates and the absence of effective therapy. Preclinical development of novel therapeutics requires a disease model that recapitulates the genotype and phenotype of patient HGM. Oncolytic herpes simplex virus (oHSV) has shown efficacy and safety in cancers in preclinical and clinical studies, but its utility for HGM has not been well characterized. METHODS: Tumorsphere cultures and serial orthotopic xenografting in immunodeficient mice were used to establish a patient-derived HGM model. The model was pathologically and molecularly characterized by immunohistochemistry, western blot, and genomic DNA sequencing and compared with the patient tumor. Anti-HGM effects of oHSV G47Δ were assessed using cell viability and virus replication assays in vitro and animal survival analysis following intralesional injections of G47Δ. RESULTS: We established a serially transplantable orthotopic malignant meningioma model, MN3, which was lethal within 3 months after tumorsphere implantation. MN3 xenografts exhibited the pathological hallmarks of malignant meningioma such as high Ki67 and vimentin expression. Both the patient tumor and xenografts were negative for neurofibromin 2 (merlin) and had the identical NF2 mutation. Oncolytic HSV G47Δ efficiently spread and killed MN3 cells, as well as other patient-derived HGM lines in vitro. Treatment with G47Δ significantly extended the survival of mice bearing subdural MN3 tumors. CONCLUSIONS: We established a new patient-derived meningioma model that will enable the study of targeted therapeutic approaches for HGM. Based on these studies, it is reasonable to consider a clinical trial of G47Δ for HGM.


Assuntos
Vetores Genéticos/administração & dosagem , Neoplasias Meníngeas/terapia , Meningioma/terapia , Terapia Viral Oncolítica , Simplexvirus/genética , Animais , Apoptose , Proliferação de Células , Feminino , Humanos , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Meningioma/genética , Meningioma/patologia , Camundongos , Camundongos SCID , Células Tumorais Cultivadas , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Neuropathol Exp Neurol ; 74(7): 710-22, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26083570

RESUMO

Tissue hypoxia and necrosis represent pathophysiologic and histologic hallmarks of glioblastoma (GBM). Although hypoxia inducible factor 1α (HIF-1α) plays crucial roles in the malignant phenotypes of GBM, developing HIF-1α-targeted agents has been hampered by the lack of a suitable preclinical model that recapitulates the complex biology of clinical GBM. We present a new GBM model, MGG123, which was established from a recurrent human GBM. Orthotopic xenografting of stem-like MGG123 cells reproducibly generated lethal tumors that were characterized by foci of palisading necrosis, hypervascularity, and robust stem cell marker expression. Perinecrotic neoplastic cells distinctively express HIF-1α and are proliferative in both xenografts and the patient tissue. The xenografts contain scattered hypoxic foci that were consistently greater than 50 µm distant from blood vessels, indicating intratumoral heterogeneity of oxygenation. Hypoxia enhanced HIF-1α expression in cultured MGG123 cells, which was abrogated by the HIF-1α inhibitors digoxin or ouabain. In vivo, treatment of orthotopic MGG123 xenografts with digoxin decreased HIF-1α expression, vascular endothelial growth factor mRNA levels, and CD34-positive vasculature within the tumors, and extended survival of mice bearing the aggressive MGG123 GBM. This preclinical tumor model faithfully recapitulates the GBM-relevant hypoxic microenvironment and stemness and is a suitable platform for studying disease biology and developing hypoxia-targeted agents.


Assuntos
Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioblastoma/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Microambiente Tumoral , Animais , Antígenos CD/metabolismo , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Estudos de Coortes , Digoxina/farmacologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Antígeno Ki-67/metabolismo , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Fatores de Transcrição SOXB1/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA