Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39124291

RESUMO

To improve the biocompatibility and bioactivity of biodegradable iron-based materials, nanostructured surfaces formed by metal oxides offer a promising strategy for surface functionalization. To explore this potential, iron oxide nanotubes were synthesized on pure iron (Fe) using an anodic oxidation process (50 V-30 min, using an ethylene glycol solution containing 0.3% NH4F and 3% H2O, at a speed of 100 rpm). A nanotube layer composed mainly of α-Fe2O3 with diameters between 60 and 70 nm was obtained. The effect of the Fe-oxide nanotube layer on cell viability and morphology was evaluated by in vitro studies using a human osteosarcoma cell line (SaOs-2 cells). The results showed that the presence of this layer did not harm the viability or morphology of the cells. Furthermore, cells cultured on anodized surfaces showed higher metabolic activity than those on non-anodized surfaces. This research suggests that growing a layer of Fe oxide nanotubes on pure Fe is a promising method for functionalizing and improving the cytocompatibility of iron substrates. This opens up new opportunities for biomedical applications, including the development of cardiovascular stents or osteosynthesis implants.

2.
J Clin Med ; 8(7)2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31262092

RESUMO

This animal study evaluated the osseointegration level of a new nanotextured titanium surface produced by anodization. Ti-cp micro-implants (1.5 mm diameter by 2.5 mm in length) divided into two groups: titanium nanotextured surface treatment (Test Group) and acid etched surface treatment (Control Group). Surface characterization included morphology analysis using scanning electron microscopy and wettability by measuring contact angle. Sixteen Wistar rats were submitted to two micro implants surgical placement procedures. In each rat, one type of micro implant placed in each tibia. The animals sacrificed after two (T1) and six weeks (T2) post-implantation. After the euthanasia, tibias processed for histomorphometric analysis, which allowed the evaluation of bone to implant contact (BIC) and the bone area fraction occupancy between the threads (BAFO). Our surface analysis data showed that the Control Group exhibited an irregular and non-homogenous topography while the Test Group showed a nanotextured surface. The Test Group showed higher wettability (contact angle = 5.1 ± 0.7°) than the Control Group (contact angle = 75.5 ± 4.6°). Concerning the histomorphometric analysis results for T1, Control and Test groups showed BIC percentages of 41.3 ± 15.2% and 63.1 ± 8.7% (p < 0.05), respectively, and for BAFO, 28.7 ± 13.7% and 54.8 ± 7.5%, respectively (p < 0.05). For T2, the histomorphometric analysis for Control and Test groups showed BIC percentages of 51.2 ± 11.4% and 64.8 ± 7.4% (p < 0.05), respectively and for BAFO, 36.4 ± 10.3% and 57.9 ± 9.3% (p < 0.05), respectively. The findings of the current study confirmed that the novel nanotextured surface exhibited superior wettability, improved peri-implant bone formation, and expedited osseointegration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA