Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(34): 41141-41150, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37606065

RESUMO

Efficient and dynamic light manipulation at small scale is highly desirable for many photonics applications. Active optical metasurfaces represent a useful way of achieving this due to their creative design potential, compact footprint, and low power consumption, paving the way toward the realization of chip-scale photonic devices with tunable optical functionality on demand. Here, we demonstrate a dynamically tunable, dual-function metasurface based on dielectric resonances in vanadium dioxide that is capable of independent active amplitude and phase control without the use of mechanical parts. Significant developments in the nanofabrication of vanadium dioxide have been shown to enable this metasurface. Gradual thermal control of the metasurface yields a computationally predicted continuously tuned amplitude modulation of 19 dB with negligible phase modulation and a continuously tuned phase modulation of 228° with negligible amplitude modulation, both at near-infrared wavelengths. Experimentally, a maximum continuously tuned amplitude modulation of 9.6 dB and phase modulation of 120° are shown, along with demonstration of stable intermediate states and repeated modulation without degradation. Reprogrammable optical functionality can thus be achieved in precisely engineered nanoantenna arrays for adaptive modulation of amplitude and phase of light for applications such as tunable holograms, lenses, and beam deflectors.

2.
ACS Appl Mater Interfaces ; 14(21): 24281-24289, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35594152

RESUMO

The deployment of two-dimensional (2D) materials for solar energy conversion requires scalable large-area devices. Here, we present the design, modeling, fabrication, and characterization of monolayer MoS2-based lateral Schottky-junction photovoltaic (PV) devices grown by using chemical vapor deposition (CVD). The device design consists of asymmetric Ti and Pt metal contacts with a work function offset to enable charge separation. These early stage devices show repeatable performance under 1 sun illumination, with VOC of 160 mV, JSC of 0.01 mA/cm2, power conversion efficiency of 0.0005%, and specific power of 1.58 kW/kg. An optoelectronic model for this device is developed and validated with experimental results. This model is used to understand loss mechanisms and project optimized device designs. The model predicts that a 2D PV device with ∼70 kW/kg of specific power can be achieved with minimum optimization to the current devices. By increasing the thickness of the absorber layer, we can achieve even higher performance devices. Finally, a 25 mm2 area solar cell made with a 0.65 nm thick MoS2 monolayer is demonstrated, showing VOC of 210 mV under 1 sun illumination. This is the first demonstration of a large-area PV device made with CVD-grown scalable 2D materials.

3.
ACS Appl Nano Mater ; 5(3): 3983-3991, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35372799

RESUMO

Biomarker detection and bulk refractive index sensing are important across multiple industries ranging from early medical diagnosis to chemical process quality control. The bulky size, high cost, and complex architecture of existing refractive index and biomarker sensing technologies limit their use to highly skilled environments like hospitals, large food processing plants, and research labs. Here, we demonstrate a compact and inexpensive refractive index sensor based on resonant dielectric photonic nanoantenna arrays or metasurfaces. These dielectric resonances support Mie dipole and asymmetric resonances that shift with changes in their external environment. A single-wavelength transmission measurement in a portable (<250 in.3), low-cost (<$4000) sensor shows sensitivity to 1.9 × 10-6 change in the fluid refractive index without the use of a spectrometer or other complex optics. Our sensor assembly allows for measurements using multiple metasurfaces with identical resonances or varying resonance types for enhanced diagnostics on the same chip. Furthermore, a 10 kDa culture filtrate peptide CFP-10, a marker for human tuberculosis, is detected with our sensor with 10 pM resolution. This system has the potential to enable facile, fast, and highly sensitive measurements with adequate limits of detection for personalized biomedical diagnoses.

4.
Opt Express ; 19(16): 14990-8, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21934860

RESUMO

All-semiconductor, highly anisotropic metamaterials provide a straightforward path to negative refraction in the mid-infrared. However, their usefulness in applications is restricted by strong frequency dispersion and limited spectral bandwidth. In this work, we show that by stacking multiple metamaterials of varying thickness and doping into one compound metamaterial, bandwidth is increased by 27% over a single-stack metamaterial, and dispersion is reduced.


Assuntos
Óptica e Fotônica , Anisotropia , Raios Infravermelhos , Luz , Teste de Materiais , Modelos Estatísticos , Refratometria/métodos , Espalhamento de Radiação , Semicondutores , Difração de Raios X
5.
Rev Sci Instrum ; 81(6): 063102, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20590220

RESUMO

A new instrument has been constructed that couples a supersonic expansion source to a continuous wave cavity ringdown spectrometer using a Fabry-Perot quantum cascade laser (QCL). The purpose of the instrument is to enable the acquisition of a cold, rotationally resolved gas phase spectrum of buckminsterfullerene (C(60)). As a first test of the system, high resolution spectra of the nu(8) vibrational band of CH(2)Br(2) have been acquired at approximately 1197 cm(-1). To our knowledge, this is the first time that a vibrational band not previously recorded with rotational resolution has been acquired with a QCL-based ringdown spectrometer. 62 transitions of the three isotopologues of CH(2)Br(2) were assigned and fit to effective Hamiltonians with a standard deviation of 14 MHz, which is smaller than the laser frequency step size. The spectra have a noise equivalent absorption coefficient of 1.4 x 10(-8) cm(-1). Spectral simulations of the band indicate that the supersonic source produces rotationally cold (approximately 7 K) molecules.

6.
Opt Express ; 14(1): 279-90, 2006 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-19503341

RESUMO

Wire waveguides have recently been shown to be valuable for transporting pulsed terahertz radiation. This technique relies on the use of a scattering mechanism for input coupling. A radially polarized surface wave is excited when a linearly polarized terahertz pulse is focused on the gap between the wire waveguide and another metal structure. We calculate the input coupling efficiency using a simulation based on the Finite Element Method (FEM). Additional FEM results indicate that enhanced coupling efficiency can be achieved through the use of a radially symmetric photoconductive antenna. Experimental results confirm that such an antenna can generate terahertz radiation which couples to the radial waveguide mode with greatly improved efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA