Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 838(Pt 2): 156092, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35605869

RESUMO

Plastic waste is steadily polluting oceans and environments. Even if collected, most waste is still predominantly incinerated for energy recovery at the cost of CO2. Chemical recycling can contribute to the transition towards a circular economy with pyrolysis combined with steam cracking being the favored recycling option for the time being. However, today, the high variety and contamination of real waste remains the biggest challenge. This is especially relevant for waste fractions which are difficult or even impossible to recycle mechanically such as highly mixed municipal plastic waste or marine litter. In this work, we studied the detailed composition and the steam cracking performance of distilled pyrolysis oil fractions in the naphtha-range of two highly relevant waste fractions: mixed municipal plastic waste (MPW) considered unsuitable for mechanical recycling and marine litter (ML) collected from the sea bottom. Advanced analytical techniques including comprehensive two-dimensional gas chromatography (GC × GC) coupled with various detectors and inductively coupled plasma - mass spectrometry (ICP-MS) were applied to characterize the feedstocks and to understand how their properties affect the steam cracking performance. Both waste-derived naphtha fractions were rich in olefins and aromatics (~70% in MPW naphtha and ~51% in ML naphtha) next to traces of nitrogen, oxygen, chlorine and metals. ICP-MS analyses showed that sodium, potassium, silicon and iron were the most crucial metals that should be removed in further upgrading steps. Steam cracking of the waste-derived naphtha fractions resulted in lower light olefin yields compared to fossil naphtha used as benchmark, due to secondary reactions of aromatics and olefins. Coke formation of ML naphtha was slightly increased compared to fossil naphtha (+ ~50%), while that of MPW naphtha was more than ~180% higher. It was concluded that mild upgrading of the waste-derived naphtha fractions or dilution with fossil feedstocks is sufficient to provide feedstocks suitable for industrial steam cracking.


Assuntos
Plásticos , Pirólise , Alcenos , Óleos de Plantas , Plásticos/química , Reciclagem , Vapor
2.
Waste Manag ; 139: 85-95, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34953380

RESUMO

Chemical recycling of polystyrene (PS) via pyrolysis is of great industrial, and academic interest, with styrene being the primary product of interest. To identify the optimal process conditions, the pyrolysis of end-of-life PS was studied in a pilot-scale unit consisting of an extruder, and a continuous stirred tank reactor (CSTR). The PS was pyrolyzed with continuous feeding at a pressure range from 0.02 to 1.0bara, and a temperature range from 450 to 600 °C, giving primarily styrene, other mono-aromatics, and oligomers. The comprehensive two-dimensional gas chromatography (GC × GC) coupled with flame ionization detector (FID), and time-of-flight mass spectrometer (ToF-MS) as well as GC with thermal conductivity detector (TCD) were used to characterize the liquid, and gaseous products exhaustively. The styrene yield increased from 36 wt% at 1.0bara, and 450 °C to 56 wt% at 0.02bara, and 550 °C. Working under a vacuum enhanced the styrene recovery at all corresponding temperature levels. The yield of benzene, toluene, ethylbenzene, and xylene (BTEX) increased from 4 wt% at 450 °C, and 0.02 bara to 17 wt% at 450 °C, and 1.0 bara. The experimental results have been used in a mathematical model that can explain the combined effect of temperature, and pressure on the yield of the primary products. The present work illustrates the potential of a continuous pyrolysis process for end-of-life PS, and paves the way for this technology to be rapidly transferred from mere laboratory use to industrial processes in the circular (petro-) chemical industry.


Assuntos
Poliestirenos , Pirólise , Reciclagem , Tolueno , Xilenos
3.
Waste Manag ; 138: 83-115, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871884

RESUMO

Thermochemical recycling of plastic waste to base chemicals via pyrolysis followed by a minimal amount of upgrading and steam cracking is expected to be the dominant chemical recycling technology in the coming decade. However, there are substantial safety and operational risks when using plastic waste pyrolysis oils instead of conventional fossil-based feedstocks. This is due to the fact that plastic waste pyrolysis oils contain a vast amount of contaminants which are the main drivers for corrosion, fouling and downstream catalyst poisoning in industrial steam cracking plants. Contaminants are therefore crucial to evaluate the steam cracking feasibility of these alternative feedstocks. Indeed, current plastic waste pyrolysis oils exceed typical feedstock specifications for numerous known contaminants, e.g. nitrogen (∼1650 vs. 100 ppm max.), oxygen (∼1250 vs. 100 ppm max.), chlorine (∼1460vs. 3 ppm max.), iron (∼33 vs. 0.001 ppm max.), sodium (∼0.8 vs. 0.125 ppm max.)and calcium (∼17vs. 0.5 ppm max.). Pyrolysis oils produced from post-consumer plastic waste can only meet the current specifications set for industrial steam cracker feedstocks if they are upgraded, with hydrogen based technologies being the most effective, in combination with an effective pre-treatment of the plastic waste such as dehalogenation. Moreover, steam crackers are reliant on a stable and predictable feedstock quality and quantity representing a challenge with plastic waste being largely influenced by consumer behavior, seasonal changes and local sorting efficiencies. Nevertheless, with standardization of sorting plants this is expected to become less problematic in the coming decade.


Assuntos
Plásticos , Pirólise , Óleos de Plantas , Reciclagem , Vapor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA