Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Autoimmun ; 136: 103013, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36857863

RESUMO

Immune Checkpoint Receptors include a number of inhibitory receptors that limit tissue damage during immune responses; blocking PD-1/PD-L1 checkpoint receptor axis led to a paradigm shift in cancer immunotherapy but also to autoimmune adverse effects, prominently thyroid autoimmunity. Although PD-L1 is known to be expressed on thyroid follicular cells (TFCs) of autoimmune glands the role on PD-1/PD-L1 in the interaction between T cells and thyroid cells in the tissue has not been investigated. Here we report that autologous primary TFCs, but not transformed TFCs, inhibit CD4 and CD8 T cell proliferation but no cytokine production. This effect is not, however, mediated by PD-1/PD-L1 nor locally produced cytokines. Beta galactosidase analysis excluded culture-induced senescence as an explanation. High resolution flow cytometry demonstrated that autologous TFC/T cells co-culture induced the expansion of several clusters of double negative (DN) T cells characterized by high expression of activation markers and negative immune checkpoints. Single cell transcriptomic profiling demonstrated that dissociated TFC express numerous candidate molecules for mediating this suppressive activity, including CD40, E-Cadherin and TIGIT ligands. These ligands directly or through the generation of a suppressor population of DN T cells, and not the PD-1/PD-L1 axis, are most likely the responsible of TFC immunosuppressive activity. These results contribute to reveal the complex network of inhibitory mechanism that operate at the tissue level to restrain autoimmunity but also point to pathways, other that PD-1/PD-L1, that can contribute to tumor evasion.


Assuntos
Antígeno B7-H1 , Glândula Tireoide , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T CD8-Positivos , Proliferação de Células
2.
Front Cell Dev Biol ; 9: 747667, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35036403

RESUMO

Long noncoding RNAs (lncRNAs) are regulatory molecules which have been traditionally considered as "non-coding". Strikingly, recent evidence has demonstrated that many non-coding regions, including lncRNAs, do in fact contain small-open reading frames that code for small proteins that have been called microproteins. Only a few of them have been characterized so far, but they display key functions in a wide variety of cellular processes. Here, we show that TUNAR lncRNA encodes an evolutionarily conserved microprotein expressed in the nervous system that we have named pTUNAR. pTUNAR deficiency in mouse embryonic stem cells improves their differentiation potential towards neural lineage both in vitro and in vivo. Conversely, pTUNAR overexpression impairs neuronal differentiation by reduced neurite formation in different model systems. At the subcellular level, pTUNAR is a transmembrane protein that localizes in the endoplasmic reticulum and interacts with the calcium transporter SERCA2. pTUNAR overexpression reduces cytoplasmatic calcium, consistent with a possible role of pTUNAR as an activator of SERCA2. Altogether, our results suggest that our newly discovered microprotein has an important role in neural differentiation and neurite formation through the regulation of intracellular calcium. From a more general point of view, our results provide a proof of concept of the role of lncRNAs-encoded microproteins in neural differentiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA