Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Anticancer Drugs ; 35(6): 563-568, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453157

RESUMO

The treatment of non-small cell lung cancer (NSCLC) has undergone a change because of the advancement of new therapies, like immune checkpoint inhibitors (ICIs), including pembrolizumab. A 64-year-old woman received a kidney transplant in 2012 because of chronic kidney disease secondary to glomerulosclerosis, diagnosed in 2020 with stage IV NSCLC because of metastasis in the contralateral lung, with programmed death ligand 1programmed death ligand 1 expression of 98%, starting treatment with ICIs, despite presenting a graft rejection risk around 40%. After three ICIs cycles, the patient presented a partial response, with good tolerance to treatment and no signs of graft failure. ICIs were maintained for 19 cycles, until disease progression was observed on a reassessment computed tomography, with a progression-free interval of 18 months, with no evidence of treatment rejection. In transplant patients diagnosed with some type of tumor, antineoplastic therapies may be less effective than in the general population. The current evidence derives from observational studies and case series, since this patient population was excluded from clinical trials, suggesting that the use of ICIs in patients with kidney transplants can lead to acute graft rejection. This is still a controversial issue, it is necessary to improve the quality of the data, with the implementation of clinical trials or prospective studies.


Assuntos
Anticorpos Monoclonais Humanizados , Transplante de Rim , Neoplasias Pulmonares , Humanos , Anticorpos Monoclonais Humanizados/uso terapêutico , Feminino , Pessoa de Meia-Idade , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Antineoplásicos Imunológicos/uso terapêutico
2.
Antioxidants (Basel) ; 13(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38247491

RESUMO

In this study, we examined the metabolic and gut microbiome responses to paraquat (PQ) in male Wistar rats, focusing on oxidative stress effects. Rats received a single intraperitoneal injection of PQ at 15 and 30 mg/kg, and various oxidative stress parameters (i.e., MDA, SOD, ROS, 8-isoprostanes) were assessed after three days. To explore the omic profile, GC-qTOF and UHPLC-qTOF were performed to assess the plasma metabolome; 1H-NMR was used to assess the urine metabolome; and shotgun metagenomics sequencing was performed to study the gut microbiome. Our results revealed reductions in body weight and tissue changes, particularly in the liver, were observed, suggesting a systemic effect of PQ. Elevated lipid peroxidation and reactive oxygen species levels in the liver and plasma indicated the induction of oxidative stress. Metabolic profiling revealed changes in the tricarboxylic acid cycle, accumulation of ketone body, and altered levels of key metabolites, such as 3-hydroxybutyric acid and serine, suggesting intricate links between energy metabolism and redox reactions. Plasma metabolomic analysis revealed alterations in mitochondrial metabolism, nicotinamide metabolism, and tryptophan degradation. The gut microbiome showed shifts, with higher PQ doses influencing microbial populations (e.g., Escherichia coli and Akkermansia muciniphila) and metagenomic functions (pyruvate metabolism, fermentation, nucleotide and amino acid biosynthesis). Overall, this study provides comprehensive insights into the complex interplay between PQ exposure, metabolic responses, and gut microbiome dynamics. These findings enhance our understanding of the mechanisms behind oxidative stress-induced metabolic alterations and underscore the connections between xenobiotic exposure, gut microbiota, and host metabolism.

3.
Anticancer Drugs ; 35(4): 377-382, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38271682

RESUMO

The treatment of non-small cell lung cancer (NSCLC) has undergone a change due to the advancement of new therapies, like immune checkpoint inhibitors (ICIs), including pembrolizumab. A 64-year-old woman received a kidney transplant in 2012 due to chronic kidney disease secondary to glomerulosclerosis, diagnosed in 2020 with stage IV NSCLC due to metastasis in the contralateral lung, with PD-L1 expression of 98%, starting treatment with ICIs, despite presenting a graft rejection risk around 40%. After 3 ICI cycles, the patient presented a partial response, with good tolerance to treatment and no signs of graft failure. ICIs were maintained for 19 cycles, until disease progression was observed on a reassessment computed tomography, with a progression-free interval of 18 months, with no evidence of treatment rejection. In transplant patients diagnosed with some type of tumor, antineoplastic therapies may be less effective than in the general population. The current evidence derives from observational studies and case series, since this patient population was excluded from clinical trials, suggesting that the use of ICIs in patients with kidney transplants can lead to acute graft rejection. This is still a controversial issue, it is necessary to improve the quality of the data, with the implementation of clinical trials or prospective studies.


Assuntos
Anticorpos Monoclonais Humanizados , Antineoplásicos Imunológicos , Carcinoma Pulmonar de Células não Pequenas , Transplante de Rim , Neoplasias Pulmonares , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Estudos Prospectivos , Antineoplásicos Imunológicos/efeitos adversos
4.
Clin Cancer Res ; 30(3): 554-563, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37787999

RESUMO

PURPOSE: Brain metastases (BM) are mainly treated palliatively with an expected survival of less than 12 months after diagnosis. In many solid tumors, the human neural stem cell marker glycoprotein CD133 is a marker of a tumor-initiating cell population that contributes to therapy resistance, relapse, and metastasis. EXPERIMENTAL DESIGN: Here, we use a variant of our previously described CD133 binder to generate second-generation CD133-specific chimeric antigen receptor T cells (CAR-T) to demonstrate its specificity and efficacy against multiple patient-derived BM cell lines with variable CD133 antigen expression. RESULTS: Using both lung- and colon-BM patient-derived xenograft models, we show that a CD133-targeting CAR-T cell therapy can evoke significant tumor reduction and survival advantage after a single dose, with complete remission observed in the colon-BM model. CONCLUSIONS: In summary, these data suggest that CD133 plays a critical role in fueling the growth of BM, and immunotherapeutic targeting of this cell population is a feasible strategy to control the outgrowth of BM tumors that are otherwise limited to palliative care. See related commentary by Sloan et al., p. 477.


Assuntos
Neoplasias Encefálicas , Receptores de Antígenos Quiméricos , Humanos , Ensaios Antitumorais Modelo de Xenoenxerto , Recidiva Local de Neoplasia/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/metabolismo , Linfócitos T , Linhagem Celular Tumoral , Antígeno AC133/metabolismo
5.
Sci Rep ; 13(1): 22646, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114521

RESUMO

Hypertriglyceridemia (HTG) is an independent risk factor for atherosclerotic cardiovascular disease (ASCVD). One of the multiple origins of HTG alteration is impaired lipoprotein lipase (LPL) activity, which is an emerging target for HTG treatment. We hypothesised that early, even mild, alterations in LPL activity might result in an identifiable metabolomic signature. The aim of the present study was to assess whether a metabolic signature of altered LPL activity in a preclinical model can be identified in humans. A preclinical LPL-dependent model of HTG was developed using a single intraperitoneal injection of poloxamer 407 (P407) in male Wistar rats. A rat metabolomics signature was identified, which led to a predictive model developed using machine learning techniques. The predictive model was applied to 140 humans classified according to clinical guidelines as (1) normal, less than 1.7 mmol/L; (2) risk of HTG, above 1.7 mmol/L. Injection of P407 in rats induced HTG by effectively inhibiting plasma LPL activity. Significantly responsive metabolites (i.e. specific triacylglycerols, diacylglycerols, phosphatidylcholines, cholesterol esters and lysophospholipids) were used to generate a predictive model. Healthy human volunteers with the impaired predictive LPL signature had statistically higher levels of TG, TC, LDL and APOB than those without the impaired LPL signature. The application of predictive metabolomic models based on mechanistic preclinical research may be considered as a strategy to stratify subjects with HTG of different origins. This approach may be of interest for precision medicine and nutritional approaches.


Assuntos
Hipertrigliceridemia , Lipase Lipoproteica , Animais , Humanos , Masculino , Ratos , Ésteres do Colesterol/metabolismo , Lipase Lipoproteica/metabolismo , Ratos Wistar , Triglicerídeos
7.
Cancer Cell ; 40(12): 1488-1502.e7, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36368321

RESUMO

MYC-driven medulloblastoma (MB) is an aggressive pediatric brain tumor characterized by therapy resistance and disease recurrence. Here, we integrated data from unbiased genetic screening and metabolomic profiling to identify multiple cancer-selective metabolic vulnerabilities in MYC-driven MB tumor cells, which are amenable to therapeutic targeting. Among these targets, dihydroorotate dehydrogenase (DHODH), an enzyme that catalyzes de novo pyrimidine biosynthesis, emerged as a favorable candidate for therapeutic targeting. Mechanistically, DHODH inhibition acts on target, leading to uridine metabolite scarcity and hyperlipidemia, accompanied by reduced protein O-GlcNAcylation and c-Myc degradation. Pyrimidine starvation evokes a metabolic stress response that leads to cell-cycle arrest and apoptosis. We further show that an orally available small-molecule DHODH inhibitor demonstrates potent mono-therapeutic efficacy against patient-derived MB xenografts in vivo. The reprogramming of pyrimidine metabolism in MYC-driven medulloblastoma represents an unappreciated therapeutic strategy and a potential new class of treatments with stronger cancer selectivity and fewer neurotoxic sequelae.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Criança , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Di-Hidro-Orotato Desidrogenase , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Pirimidinas/uso terapêutico , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo
8.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269702

RESUMO

Chronic inflammation is an important risk factor in a broad variety of physical and mental disorders leading to highly prevalent non-communicable diseases (NCDs). However, there is a need for a deeper understanding of this condition and its progression to the disease state. For this reason, it is important to define metabolic pathways and complementary biomarkers associated with homeostatic disruption in chronic inflammation. To achieve that, male Wistar rats were subjected to intraperitoneal and intermittent injections with saline solution or increasing lipopolysaccharide (LPS) concentrations (0.5, 5 and 7.5 mg/kg) thrice a week for 31 days. Biochemical and inflammatory parameters were measured at the end of the study. To assess the omics profile, GC-qTOF and UHPLC-qTOF were performed to evaluate plasma metabolome; 1H-NMR was used to evaluate urine metabolome; additionally, shotgun metagenomics sequencing was carried out to characterize the cecum microbiome. The chronicity of inflammation in the study was evaluated by the monitoring of monocyte chemoattractant protein-1 (MCP-1) during the different weeks of the experimental process. At the end of the study, together with the increased levels of MCP-1, levels of interleukin-6 (IL-6), tumour necrosis factor alpha (TNF-α) and prostaglandin E2 (PGE2) along with 8-isoprostanes (an indicative of oxidative stress) were significantly increased (p-value < 0.05). The leading features implicated in the current model were tricarboxylic acid (TCA) cycle intermediates (i.e., alpha-ketoglutarate, aconitic acid, malic acid, fumaric acid and succinic acid); lipids such as specific cholesterol esters (ChoEs), lysophospholipids (LPCs) and phosphatidylcholines (PCs); and glycine, as well as N, N-dimethylglycine, which are related to one-carbon (1C) metabolism. These metabolites point towards mitochondrial metabolism through TCA cycle, ß-oxidation of fatty acids and 1C metabolism as interconnected pathways that could reveal the metabolic effects of chronic inflammation induced by LPS administration. These results provide deeper knowledge concerning the impact of chronic inflammation on the disruption of metabolic homeostasis.


Assuntos
Ácidos Graxos , Lipopolissacarídeos , Animais , Carbono , Homeostase , Humanos , Inflamação , Lipopolissacarídeos/toxicidade , Masculino , Metaboloma , Ratos , Ratos Wistar
9.
Anticancer Drugs ; 33(1): 94-99, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34261922

RESUMO

Pembrolizumab is a mAb against the programmed cell death protein-1 (PD-1). It has been approved for the treatment of advanced melanoma (unresectable or metastatic) in adults. Side effects associated with the use of anti-PD-1 are usually considered well tolerated; nevertheless, there are immune-related adverse events that may require treatment discontinuation. A 79-year-old man diagnosed with stage IV right scapular melanoma experienced unspecific symptoms and alterations of the hypothalamus-hypophysis axis after six cycles with pembrolizumab. The case was compatible with immune-related hypophysitis. Autoimmune thyroiditis and primary hypophysitis were excluded and toxicity due to pembrolizumab was considered the cause of hypophysitis. Pembrolizumab was discontinued and toxicity was managed with corticosteroids and hormonal replacement therapy (HRT). After 7 months of follow-up, symptoms were controlled with HRT but thyrotropin and corticotropin hormones had not recovered. It was decided not to reintroduce immunotherapy. Although endocrine disorders are common with the use of anti-PD-1, hypophysitis is very rare. However, clinical signs and symptoms can be nonspecific, therefore, it has probably been underdiagnosed. Monitoring hormones before and during the treatment is important for an early diagnosis and also to replace the alterations with HRT to control the symptoms. Hormonal function does not always recover, but it does not mean immunotherapy cannot be restarted and it should be evaluated in every case.


Assuntos
Anticorpos Monoclonais Humanizados/efeitos adversos , Antineoplásicos Imunológicos/efeitos adversos , Hipofisite/induzido quimicamente , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Idoso , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Humanos , Masculino , Melanoma/patologia , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias Cutâneas/patologia
11.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884735

RESUMO

Stress disorders have dramatically increased in recent decades becoming the most prevalent psychiatric disorder in the United States and Europe. However, the diagnosis of stress disorders is currently based on symptom checklist and psychological questionnaires, thus making the identification of candidate biomarkers necessary to gain better insights into this pathology and its related metabolic alterations. Regarding the identification of potential biomarkers, omic profiling and metabolic footprint arise as promising approaches to recognize early biochemical changes in such disease and provide opportunities for the development of integrative candidate biomarkers. Here, we studied plasma and urine metabolites together with metagenomics in a 3 days Chronic Unpredictable Mild Stress (3d CUMS) animal approach that aims to focus on the early stress period of a well-established depression model. The multi-omics integration showed a profile composed by a signature of eight plasma metabolites, six urine metabolites and five microbes. Specifically, threonic acid, malic acid, alpha-ketoglutarate, succinic acid and cholesterol were proposed as key metabolites that could serve as key potential biomarkers in plasma metabolome of early stages of stress. Such findings targeted the threonic acid metabolism and the tricarboxylic acid (TCA) cycle as important pathways in early stress. Additionally, an increase in opportunistic microbes as virus of the Herpesvirales was observed in the microbiota as an effect of the primary stress stages. Our results provide an experimental biochemical characterization of the early stage of CUMS accompanied by a subsequent omic profiling and a metabolic footprinting that provide potential candidate biomarkers.


Assuntos
Metaboloma , Microbiota , Estresse Psicológico/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/urina , Masculino , Ratos Wistar , Estresse Psicológico/microbiologia
12.
BMC Complement Med Ther ; 21(1): 216, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454481

RESUMO

BACKGROUND: In recent years, an increase in the occurrence of illnesses caused by two clinically- important arboviruses has been reported: Zika virus (ZIKV) and Chikungunya virus (CHIKV). There is no licensed antiviral treatment for either of the two abovementioned viruses. Bearing in mind that the antiviral effect of indole alkaloids has been reported for other arboviral models, the present study proposed to evaluate the antiviral in vitro and in silico effects of four indole alkaloids on infections by these two viruses in different cell lines. METHODS: The antiviral effects of voacangine (VOAC), voacangine-7-hydroxyindolenine (VOAC-OH), rupicoline and 3-oxo voacangine (OXO-VOAC) were evaluated in Vero, U937 and A549 cells using different experimental strategies (Pre, Trans, Post and combined treatment). Viral infection was quantified by different methodologies, including infectious viral particles by plating, viral genome by RT-qPCR, and viral protein by cell ELISA. Moreover, molecular docking was used to evaluate the possible interactions between structural and nonstructural viral proteins and the compounds. The results obtained from the antiviral strategies for each experimental condition were compared in all cases with the untreated controls. Statistically significant differences were identified using a parametric Student's t-test. In all cases, p values below 0.05 (p < 0.05) were considered statistically significant. RESULTS: In the pre-treatment strategy in Vero cells, VOAC and VOAC-OH inhibited both viral models and OXO-VOAC inhibited only ZIKV; in U937 cells infected with CHIKV/Col, only VOAC-OH inhibited infection, but none of the compounds had activity in A549 cells; in U937 cells and A549 cells infected with ZIKV/Col, the three compounds that were effective in Vero cells also had antiviral activity. In the trans-treatment strategy, only VOAC-OH was virucidal against ZIKV/Col. In the post-treatment strategy, only rupicoline was effective in the CHIKV/Col model in Vero and A549 cells, whereas VOAC and VOAC-OH inhibited ZIKV infection in all three cell lines. In the combined strategy, VOAC, VOAC-OH and rupicoline inhibited CHIKV/Col and ZIKV/Col, but only rupicoline improved the antiviral effect of ZIKV/Col-infected cultures with respect to the individual strategies. Molecular docking showed that all the compounds had favorable binding energies with the structural proteins E2 and NSP2 (CHIKV) and E and NS5 (ZIKV). CONCLUSIONS: The present study demonstrates that indole alkaloids are promising antiviral drugs in the process of ZIKV and CHIKV infection; however, the mechanisms of action evaluated in this study would indicate that the effect is different in each viral model and, in turn, dependent on the cell line.


Assuntos
Antivirais/farmacologia , Febre de Chikungunya/tratamento farmacológico , Alcaloides Indólicos/farmacologia , Células Vero/efeitos dos fármacos , Infecção por Zika virus/tratamento farmacológico , Zika virus/efeitos dos fármacos , Animais , Chlorocebus aethiops/metabolismo , Humanos
13.
Plants (Basel) ; 10(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201900

RESUMO

Currently, no specific licensed antiviral exists for treating the illness caused by dengue virus (DENV). Therefore, the search for compounds of natural origin with antiviral activity is an important area of research. In the present study, three compounds were isolated and identified from seeds of Tabernaemontana cymosa plants. The in vitro antiviral effect of those compounds and voacangine against different DENV strains was assessed using different experimental approaches: compounds added before the infection (Pre), at the same time with the virus (Trans), after the infection (Post) or compounds present in all moments of the experiment (Pre-Trans-Post, Combined treatment). In silico studies (docking and molecular dynamics) were also performed to explain the possible antiviral mechanisms. The identified compounds were three structural analogs of voacangine (voacangine-7-hydroxyindolenine, rupicoline and 3-oxo-voacangine). In the Pre-treatment, only voacangine-7-hydroxyindolenine and rupicoline inhibited the infection caused by the DENV-2/NG strain (16.4% and 29.6% infection, respectively). In the Trans-treatment approach, voacangine, voacangine-7-hydroxyindolenine and rupicoline inhibited the infection in both DENV-2/NG (11.2%, 80.4% and 75.7% infection, respectively) and DENV-2/16681 infection models (73.7%, 74.0% and 75.3% infection, respectively). The latter strain was also inhibited by 3-oxo-voacangine (82.8% infection). Moreover, voacangine (most effective virucidal agent) was also effective against one strain of DENV-1 (DENV-1/WestPac/74) and against the third strain of DENV-2 (DENV-2/S16803) (48.5% and 32.4% infection, respectively). Conversely, no inhibition was observed in the post-treatment approach. The last approach (combined) showed that voacangine, voacangine-7-hydroxyindolenine and rupicoline inhibited over 90% of infections (3.5%, 6.9% and 3.5% infection, respectively) of both strains (DENV-2/NG and DENV-2/16681). The free energy of binding obtained with an in silico approach was favorable for the E protein and compounds, which ranged between -5.1 and -6.3 kcal/mol. Finally, the complex formed between DENV-2 E protein and the best virucidal compound was stable for 50 ns. Our results show that the antiviral effect of indole alkaloids derived from T. cymose depends on the serotype and the virus strain.

14.
Molecules ; 26(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198817

RESUMO

Despite the serious public health problem represented by the diseases caused by dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) viruses, there are still no specific licensed antivirals available for their treatment. Here, we examined the potential anti-arbovirus activity of ten di-halogenated compounds derived from L-tyrosine with modifications in amine and carboxyl groups. The activity of compounds on VERO cell line infection and the possible mechanism of action of the most promising compounds were evaluated. Finally, molecular docking between the compounds and viral and cellular proteins was evaluated in silico with Autodock Vina®, and the molecular dynamic with Gromacs®. Only two compounds (TDC-2M-ME and TDB-2M-ME) inhibited both ZIKV and CHIKV. Within the possible mechanism, in CHIKV, the two compounds decreased the number of genome copies and in the pre-treatment strategy the infectious viral particles. In the ZIKV model, only TDB-2M-ME inhibited the viral protein and demonstrate a virucidal effect. Moreover, in the U937 cell line infected with CHIKV, both compounds inhibited the viral protein and TDB-2M-ME inhibited the viral genome too. Finally, the in silico results showed a favorable binding energy between the compounds and the helicases of both viral models, the NSP3 of CHIKV and cellular proteins DDC and ß2 adrenoreceptor.


Assuntos
Antivirais/síntese química , Vírus Chikungunya/efeitos dos fármacos , Vírus da Dengue/efeitos dos fármacos , Fenóis/síntese química , Tirosina/análogos & derivados , Zika virus/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/farmacologia , Linhagem Celular , Vírus Chikungunya/genética , Vírus Chikungunya/metabolismo , Chlorocebus aethiops , Vírus da Dengue/genética , Genoma Viral/efeitos dos fármacos , Halogenação , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Fenóis/química , Fenóis/farmacologia , Células Vero , Zika virus/genética , Zika virus/metabolismo
15.
Cancers (Basel) ; 13(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919036

RESUMO

The correct characterisation of central nervous system (CNS) malignancies is crucial for accurate diagnosis and prognosis and also the identification of actionable genomic alterations that can guide the therapeutic strategy. Surgical biopsies are performed to characterise the tumour; however, these procedures are invasive and are not always feasible for all patients. Moreover, they only provide a static snapshot and can miss tumour heterogeneity. Currently, monitoring of CNS cancer is performed by conventional imaging techniques and, in some cases, cytology analysis of the cerebrospinal fluid (CSF); however, these techniques have limited sensitivity. To overcome these limitations, a liquid biopsy of the CSF can be used to obtain information about the tumour in a less invasive manner. The CSF is a source of cell-free circulating tumour DNA (ctDNA), and the analysis of this biomarker can characterise and monitor brain cancer. Recent studies have shown that ctDNA is more abundant in the CSF than plasma for CNS malignancies and that it can be sequenced to reveal tumour heterogeneity and provide diagnostic and prognostic information. Furthermore, analysis of longitudinal samples can aid patient monitoring by detecting residual disease or even tracking tumour evolution at relapse and, therefore, tailoring the therapeutic strategy. In this review, we provide an overview of the potential clinical applications of the analysis of CSF ctDNA and the challenges that need to be overcome in order to translate research findings into a tool for clinical practice.

16.
Biomolecules ; 11(2)2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670496

RESUMO

Obesity is one of the most incident and concerning disease worldwide. Definite strategies to prevent obesity and related complications remain elusive. Among the risk factors of the onset of obesity, gut microbiota might play an important role in the pathogenesis of the disease, and it has received extensive attention because it affects the host metabolism. In this study, we aimed to define a metabolic profile of the segregated obesity-associated gut dysbiosis risk factor. The study of the metabolome, in an obesity-associated gut dysbiosis model, provides a relevant way for the discrimination on the different biomarkers in the obesity onset. Thus, we developed a model of this obesity risk factors through the transference of gut microbiota from obese to non-obese male Wistar rats and performed a subsequent metabolic analysis in the receptor rats. Our results showed alterations in the lipid metabolism in plasma and in the phenylalanine metabolism in urine. In consequence, we have identified metabolic changes characterized by: (1) an increase in DG:34:2 in plasma, a decrease in hippurate, (2) an increase in 3-HPPA, and (3) an increase in o-coumaric acid. Hereby, we propose these metabolites as a metabolic profile associated to a segregated dysbiosis state related to obesity disease.


Assuntos
Disbiose/metabolismo , Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Obesidade/metabolismo , Obesidade/microbiologia , Animais , Ácidos Cumáricos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Masculino , Metabolômica/métodos , Fenilalanina/metabolismo , Projetos Piloto , Ratos , Ratos Wistar
17.
Nat Commun ; 12(1): 1503, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686071

RESUMO

Brain metastases are the most common tumor of the brain with a dismal prognosis. A fraction of patients with brain metastasis benefit from treatment with immune checkpoint inhibitors (ICI) and the degree and phenotype of the immune cell infiltration has been used to predict response to ICI. However, the anatomical location of brain lesions limits access to tumor material to characterize the immune phenotype. Here, we characterize immune cells present in brain lesions and matched cerebrospinal fluid (CSF) using single-cell RNA sequencing combined with T cell receptor genotyping. Tumor immune infiltration and specifically CD8+ T cell infiltration can be discerned through the analysis of the CSF. Consistently, identical T cell receptor clonotypes are detected in brain lesions and CSF, confirming cell exchange between these compartments. The analysis of immune cells of the CSF can provide a non-invasive alternative to predict the response to ICI, as well as identify the T cell receptor clonotypes present in brain metastasis.


Assuntos
Neoplasias Encefálicas/imunologia , Líquido Cefalorraquidiano/imunologia , Leucócitos , Microambiente Tumoral/imunologia , Adenocarcinoma de Pulmão , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Prognóstico
18.
Haematologica ; 106(2): 513-521, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32079701

RESUMO

The levels of cell free circulating tumor DNA (ctDNA) in plasma correlated with treatment response and outcome in systemic lymphomas. Notably, in brain tumors, the levels of ctDNA in the cerebrospinal fluid (CSF) are higher than in plasma. Nevertheless, their role in central nervous system (CNS) lymphomas remains elusive. We evaluated the CSF and plasma from 19 patients: 6 restricted CNS lymphomas, 1 systemic and CNS lymphoma, and 12 systemic lymphomas. We performed whole exome sequencing or targeted sequencing to identify somatic mutations of the primary tumor, then variant-specific droplet digital PCR was designed for each mutation. At time of enrolment, we found ctDNA in the CSF of all patients with restricted CNS lymphoma but not in patients with systemic lymphoma without CNS involvement. Conversely, plasma ctDNA was detected in only 2/6 patients with restricted CNS lymphoma with lower variant allele frequencies than CSF ctDNA. Moreover, we detected CSF ctDNA in 1 patient with CNS lymphoma in complete remission and in 1 patient with systemic lymphoma, 3 and 8 months before CNS relapse was confirmed; indicating CSF ctDNA might detect CNS relapse earlier than conventional methods. Finally, in 2 cases with CNS lymphoma, CSF ctDNA was still detected after treatment even though a complete decrease in CSF tumor cells was observed by flow cytometry (FC), indicating CSF ctDNA better detected residual disease than FC. In conclusion, CSF ctDNA can better detect CNS lesions than plasma ctDNA and FC. In addition, CSF ctDNA predicted CNS relapse in CNS and systemic lymphomas.


Assuntos
DNA Tumoral Circulante , Linfoma de Células B , Biomarcadores Tumorais/genética , Sistema Nervoso Central , DNA Tumoral Circulante/genética , Humanos , Recidiva Local de Neoplasia
19.
Biomolecules ; 11(1)2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374457

RESUMO

Phenolic compounds have been related to multiple biological activities, and the antiviral effect of these compounds has been demonstrated in several viral models of public health concern. In this review, we show the antiviral role of phenolic compounds against dengue virus (DENV), the most widespread arbovirus globally that, after its re-emergence, has caused multiple epidemic outbreaks, especially in the last two years. Twenty phenolic compounds with anti-DENV activity are discussed, including the multiple mechanisms of action, such as those directed against viral particles or viral proteins, host proteins or pathways related to the productive replication viral cycle and the spread of the infection.


Assuntos
Antivirais/uso terapêutico , Dengue/tratamento farmacológico , Fenóis/uso terapêutico , Replicação Viral/efeitos dos fármacos , Animais , Chlorocebus aethiops , Dengue/genética , Dengue/patologia , Dengue/virologia , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/genética , Vírus da Dengue/patogenicidade , Humanos , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Células Vero/efeitos dos fármacos , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/genética
20.
Curr Opin Neurol ; 33(6): 736-741, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33177377

RESUMO

PURPOSE OF REVIEW: The molecular characterization of central nervous system (CNS) malignancies is crucial for obtaining the correct diagnosis and prognosis, and to guide the optimal therapeutic approach. However, obtaining surgical specimens can be challenging because of the anatomical location of the tumour and may limit the correct characterization of these malignancies. Recently, it has been shown that the cerebrospinal fluid (CSF) circulating tumour DNA (ctDNA) can be used as a liquid biopsy to characterize and monitor CNS malignancies and here we review its implications and advances. RECENT FINDINGS: In the last 5 years, several groups including ours have shown that ctDNA is highly present in the CSF, in larger amounts than in plasma, and that ctDNA can be sequenced to provide information about the diagnosis and prognosis of brain malignancies. Furthermore, the analysis of CSF ctDNA has allowed the selection of optimal therapeutic approaches monitoring response to treatment and tracking tumour evolution, providing crucial information about the molecular changes during tumour progression. SUMMARY: Here, we review the recent discoveries and data relative to CSF ctDNA and discuss how CSF ctDNA can be used as a liquid biopsy to facilitate and complement the clinical management of patients with CNS malignancies.


Assuntos
Neoplasias do Sistema Nervoso Central/diagnóstico , DNA Tumoral Circulante/líquido cefalorraquidiano , Biomarcadores Tumorais/líquido cefalorraquidiano , Neoplasias do Sistema Nervoso Central/líquido cefalorraquidiano , Humanos , Biópsia Líquida , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA