Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38003422

RESUMO

Soybean cyst nematode (SCN, Heterodera glycines, Ichinohe) poses a significant threat to global soybean production, necessitating a comprehensive understanding of soybean plants' response to SCN to ensure effective management practices. In this study, we conducted dual RNA-seq analysis on SCN-resistant Plant Introduction (PI) 437654, 548402, and 88788 as well as a susceptible line (Lee 74) under exposure to SCN HG type 1.2.5.7. We aimed to elucidate resistant mechanisms in soybean and identify SCN virulence genes contributing to resistance breakdown. Transcriptomic and pathway analyses identified the phenylpropanoid, MAPK signaling, plant hormone signal transduction, and secondary metabolite pathways as key players in resistance mechanisms. Notably, PI 437654 exhibited complete resistance and displayed distinctive gene expression related to cell wall strengthening, oxidative enzymes, ROS scavengers, and Ca2+ sensors governing salicylic acid biosynthesis. Additionally, host studies with varying immunity levels and a susceptible line shed light on SCN pathogenesis and its modulation of virulence genes to evade host immunity. These novel findings provide insights into the molecular mechanisms underlying soybean-SCN interactions and offer potential targets for nematode disease management.


Assuntos
Glycine max , Tylenchoidea , Animais , Glycine max/genética , Glycine max/metabolismo , Tylenchoidea/fisiologia , Transcriptoma , Perfilação da Expressão Gênica , Doenças das Plantas/genética
2.
Plants (Basel) ; 12(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37514272

RESUMO

Soybean (Glycine max L.) is an important food-grade strategic crop worldwide because of its high seed protein and oil contents. Due to the negative correlation between seed protein and oil percentage, there is a dire need to detect reliable quantitative trait loci (QTL) underlying these traits in order to be used in marker-assisted selection (MAS) programs. Genome-wide association study (GWAS) is one of the most common genetic approaches that is regularly used for detecting QTL associated with quantitative traits. However, the current approaches are mainly focused on estimating the main effects of QTL, and, therefore, a substantial statistical improvement in GWAS is required to detect associated QTL considering their interactions with other QTL as well. This study aimed to compare the support vector regression (SVR) algorithm as a common machine learning method to fixed and random model circulating probability unification (FarmCPU), a common conventional GWAS method in detecting relevant QTL associated with soybean seed quality traits such as protein, oil, and 100-seed weight using 227 soybean genotypes. The results showed a significant negative correlation between soybean seed protein and oil concentrations, with heritability values of 0.69 and 0.67, respectively. In addition, SVR-mediated GWAS was able to identify more relevant QTL underlying the target traits than the FarmCPU method. Our findings demonstrate the potential use of machine learning algorithms in GWAS to detect durable QTL associated with soybean seed quality traits suitable for genomic-based breeding approaches. This study provides new insights into improving the accuracy and efficiency of GWAS and highlights the significance of using advanced computational methods in crop breeding research.

3.
Genes (Basel) ; 14(4)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-37107535

RESUMO

In the face of a growing global population, plant breeding is being used as a sustainable tool for increasing food security. A wide range of high-throughput omics technologies have been developed and used in plant breeding to accelerate crop improvement and develop new varieties with higher yield performance and greater resilience to climate changes, pests, and diseases. With the use of these new advanced technologies, large amounts of data have been generated on the genetic architecture of plants, which can be exploited for manipulating the key characteristics of plants that are important for crop improvement. Therefore, plant breeders have relied on high-performance computing, bioinformatics tools, and artificial intelligence (AI), such as machine-learning (ML) methods, to efficiently analyze this vast amount of complex data. The use of bigdata coupled with ML in plant breeding has the potential to revolutionize the field and increase food security. In this review, some of the challenges of this method along with some of the opportunities it can create will be discussed. In particular, we provide information about the basis of bigdata, AI, ML, and their related sub-groups. In addition, the bases and functions of some learning algorithms that are commonly used in plant breeding, three common data integration strategies for the better integration of different breeding datasets using appropriate learning algorithms, and future prospects for the application of novel algorithms in plant breeding will be discussed. The use of ML algorithms in plant breeding will equip breeders with efficient and effective tools to accelerate the development of new plant varieties and improve the efficiency of the breeding process, which are important for tackling some of the challenges facing agriculture in the era of climate change.


Assuntos
Inteligência Artificial , Produtos Agrícolas , Produtos Agrícolas/genética , Melhoramento Vegetal/métodos , Aprendizado de Máquina
4.
Heliyon ; 8(11): e11873, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36468106

RESUMO

Fast-paced yield improvement in strategic crops such as soybean is pivotal for achieving sustainable global food security. Precise genomic selection (GS), as one of the most effective genomic tools for recognizing superior genotypes, can accelerate the efficiency of breeding programs through shortening the breeding cycle, resulting in significant increases in annual yield improvement. In this study, we investigated the possible use of haplotype-based GS to increase the prediction accuracy of soybean yield and its component traits through augmenting the models by using sophisticated machine learning algorithms and optimized genetic information. The results demonstrated up to a 7% increase in the prediction accuracy when using haplotype-based GS over the full single nucleotide polymorphisms-based GS methods. In addition, we discover an auspicious haplotype block on chromosome 19 with significant impacts on yield and its components, which can be used for screening climate-resilient soybean genotypes with improved yield in large breeding populations.

5.
Front Plant Sci ; 13: 945471, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874009

RESUMO

Multi-Parent Advanced Generation Inter-Cross (MAGIC) populations are emerging genetic platforms for high-resolution and fine mapping of quantitative traits, such as agronomic and seed composition traits in soybean (Glycine max L.). We have established an eight-parent MAGIC population, comprising 721 recombinant inbred lines (RILs), through conical inter-mating of eight soybean lines. The parental lines were genetically diverse elite cultivars carrying different agronomic and seed composition characteristics, including amino acids and fatty acids, as well as oil and protein concentrations. This study aimed to introduce soybean MAGIC (SoyMAGIC) population as an unprecedented platform for genotypic and phenotypic investigation of agronomic and seed quality traits in soybean. The RILs were evaluated for important seed composition traits using replicated field trials during 2020 and 2021. To measure the seed composition traits, near-infrared reflectance (NIR) was employed. The RILs were genotyped using genotyping-by-sequencing (GBS) method to decipher the genome and discover single-nucleotide polymorphic (SNP) markers among the RILs. A high-density linkage map was constructed through inclusive composite interval mapping (ICIM). The linkage map was 3,770.75 cM in length and contained 12,007 SNP markers. Chromosomes 11 and 18 were recorded as the shortest and longest linkage groups with 71.01 and 341.15 cM in length, respectively. Observed transgressive segregation of the selected traits and higher recombination frequency across the genome confirmed the capability of MAGIC population in reshuffling the diversity in the soybean genome among the RILs. The assessment of haplotype blocks indicated an uneven distribution of the parents' genomes in RILs, suggesting cryptic influence against or in favor of certain parental genomes. The SoyMAGIC population is a recombined genetic material that will accelerate further genomic studies and the development of soybean cultivars with improved seed quality traits through the development and implementation of reliable molecular-based toolkits.

6.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628351

RESUMO

A genome-wide association study (GWAS) is currently one of the most recommended approaches for discovering marker-trait associations (MTAs) for complex traits in plant species. Insufficient statistical power is a limiting factor, especially in narrow genetic basis species, that conventional GWAS methods are suffering from. Using sophisticated mathematical methods such as machine learning (ML) algorithms may address this issue and advance the implication of this valuable genetic method in applied plant-breeding programs. In this study, we evaluated the potential use of two ML algorithms, support-vector machine (SVR) and random forest (RF), in a GWAS and compared them with two conventional methods of mixed linear models (MLM) and fixed and random model circulating probability unification (FarmCPU), for identifying MTAs for soybean-yield components. In this study, important soybean-yield component traits, including the number of reproductive nodes (RNP), non-reproductive nodes (NRNP), total nodes (NP), and total pods (PP) per plant along with yield and maturity, were assessed using a panel of 227 soybean genotypes evaluated at two locations over two years (four environments). Using the SVR-mediated GWAS method, we were able to discover MTAs colocalized with previously reported quantitative trait loci (QTL) with potential causal effects on the target traits, supported by the functional annotation of candidate gene analyses. This study demonstrated the potential benefit of using sophisticated mathematical approaches, such as SVR, in a GWAS to complement conventional GWAS methods for identifying MTAs that can improve the efficiency of genomic-based soybean-breeding programs.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Estudo de Associação Genômica Ampla/métodos , Desequilíbrio de Ligação , Aprendizado de Máquina , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Glycine max/genética
7.
Methods Mol Biol ; 2481: 43-62, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35641758

RESUMO

Statistical models are at the core of the genome-wide association study (GWAS). In this chapter, we provide an overview of single- and multilocus statistical models, Bayesian, and machine learning approaches for association studies in plants. These models are discussed based on their basic methodology, cofactors adjustment accounted for, statistical power and computational efficiency. New statistical models and machine learning algorithms are both showing improved performance in detecting missed signals, rare mutations and prioritizing causal genetic variants; nevertheless, further optimization and validation studies are required to maximize the power of GWAS.


Assuntos
Estudo de Associação Genômica Ampla , Modelos Estatísticos , Algoritmos , Teorema de Bayes , Estudo de Associação Genômica Ampla/métodos , Aprendizado de Máquina
8.
Theor Appl Genet ; 135(4): 1375-1383, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35112143

RESUMO

KEY MESSAGE: Significant QTL for sucrose concentration have been identified using a historical soybean genomic panel, which could aid in the development of food-grade soybean cultivars. Soybean (Glycine max (L.) Merr) is a crop of global importance for both human and animal consumption, which was domesticated in China more than 6000 years ago. A concern about losing genetic diversity as a result of decades of breeding has been expressed by soybean researchers. In order to develop new cultivars, it is critical for breeders to understand the genetic variability present for traits of interest in their program germplasm. Sucrose concentration is becoming an increasingly important trait for the production of soy-food products. The objective of this study was to use a genome-wide association study (GWAS) to identify putative QTL for sucrose concentration in soybean seed. A GWAS panel consisting of 266 historic and current soybean accessions was genotyped with 76 k genotype-by-sequencing (GBS) SNP data and phenotyped in four field locations in Ontario (Canada) from 2015 to 2017. Seven putative QTL were identified on chromosomes 1, 6, 8, 9, 10, 13 and 14. A key gene related to sucrose synthase (Glyma.06g182700) was found to be associated with the QTL located on chromosome 6. This information will facilitate efforts to increase the available genetic variability for sucrose concentration in soybean breeding programs and develop new and improved high-sucrose soybean cultivars suitable for the soy-food industry.


Assuntos
Estudo de Associação Genômica Ampla , Glycine max , Ontário , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sementes/genética , Glycine max/genética , Sacarose
9.
Mol Breed ; 42(10): 62, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37313012

RESUMO

Soybean cyst nematode (SCN) is one of the most damaging soybean (Glycine max) pests worldwide. More than 95% of SCN-resistant commercial cultivars in North America are derived from a single source of resistance named PI 88788, and the widespread use of this source in the past three decades has led to the selection of virulent biotypes of SCN, such as HG (Heterodera glycines) type 2.5.7 that can overcome the PI 88788-type resistance. The objectives of this study were to identify quantitative trait loci (QTL) and candidate genes underlying the resistance to HG type 2.5.7 isolate and to measure the impact of the resistance factors on seed yield. To achieve the goals, a recombinant inbreed line (RIL) population was established from a cross between an SCN-susceptible high-yielding elite soybean cultivar, OAC Calypso, and the cultivar LD07-3419, resistant to SCN HG type 2.5.7. The RILs resistant to HG type 2.5.7 were identified using greenhouse bioassay tested for differentiation of resistant sources using Kompetitive Allele-Specific PCR (KASP) assay at rhg1 and Rhg4 loci and also for rhg1 copy number variation using TaqMan assay. The RILs were also genotyped using genotype-by-sequencing and three SCN-related QTL were identified on chromosomes 9, 12, and 18 using composite interval mapping. In addition, 31 genes involved in protein kinase activity were identified within QTL regions as potential causal candidate genes underlying the resistance. No significant correlation was found between seed yield and the resistance to SCN in the RIL population evaluated under non-SCN-infested environments. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01330-8.

10.
Front Plant Sci ; 12: 777028, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880894

RESUMO

In conjunction with big data analysis methods, plant omics technologies have provided scientists with cost-effective and promising tools for discovering genetic architectures of complex agronomic traits using large breeding populations. In recent years, there has been significant progress in plant phenomics and genomics approaches for generating reliable large datasets. However, selecting an appropriate data integration and analysis method to improve the efficiency of phenome-phenome and phenome-genome association studies is still a bottleneck. This study proposes a hyperspectral wide association study (HypWAS) approach as a phenome-phenome association analysis through a hierarchical data integration strategy to estimate the prediction power of hyperspectral reflectance bands in predicting soybean seed yield. Using HypWAS, five important hyperspectral reflectance bands in visible, red-edge, and near-infrared regions were identified significantly associated with seed yield. The phenome-genome association analysis of each tested hyperspectral reflectance band was performed using two conventional genome-wide association studies (GWAS) methods and a machine learning mediated GWAS based on the support vector regression (SVR) method. Using SVR-mediated GWAS, more relevant QTL with the physiological background of the tested hyperspectral reflectance bands were detected, supported by the functional annotation of candidate gene analyses. The results of this study have indicated the advantages of using hierarchical data integration strategy and advanced mathematical methods coupled with phenome-phenome and phenome-genome association analyses for a better understanding of the biology and genetic backgrounds of hyperspectral reflectance bands affecting soybean yield formation. The identified yield-related hyperspectral reflectance bands using HypWAS can be used as indirect selection criteria for selecting superior genotypes with improved yield genetic gains in large breeding populations.

11.
PLoS One ; 16(4): e0250665, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33930039

RESUMO

Improving genetic yield potential in major food grade crops such as soybean (Glycine max L.) is the most sustainable way to address the growing global food demand and its security concerns. Yield is a complex trait and reliant on various related variables called yield components. In this study, the five most important yield component traits in soybean were measured using a panel of 250 genotypes grown in four environments. These traits were the number of nodes per plant (NP), number of non-reproductive nodes per plant (NRNP), number of reproductive nodes per plant (RNP), number of pods per plant (PP), and the ratio of number of pods to number of nodes per plant (P/N). These data were used for predicting the total soybean seed yield using the Multilayer Perceptron (MLP), Radial Basis Function (RBF), and Random Forest (RF), machine learning (ML) algorithms, individually and collectively through an ensemble method based on bagging strategy (E-B). The RBF algorithm with highest Coefficient of Determination (R2) value of 0.81 and the lowest Mean Absolute Errors (MAE) and Root Mean Square Error (RMSE) values of 148.61 kg.ha-1, and 185.31 kg.ha-1, respectively, was the most accurate algorithm and, therefore, selected as the metaClassifier for the E-B algorithm. Using the E-B algorithm, we were able to increase the prediction accuracy by improving the values of R2, MAE, and RMSE by 0.1, 0.24 kg.ha-1, and 0.96 kg.ha-1, respectively. Furthermore, for the first time in this study, we allied the E-B with the genetic algorithm (GA) to model the optimum values of yield components in an ideotype genotype in which the yield is maximized. The results revealed a better understanding of the relationships between soybean yield and its components, which can be used for selecting parental lines and designing promising crosses for developing cultivars with improved genetic yield potential.


Assuntos
Algoritmos , Produção Agrícola , Glycine max/genética , Locos de Características Quantitativas , Genótipo , Aprendizado de Máquina , Fenótipo , Sementes/genética , Glycine max/crescimento & desenvolvimento
12.
Sci Rep ; 11(1): 2556, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510334

RESUMO

Type I Diacylglycerol acyltransferase (DGAT1) catalyzes the final step of the biosynthesis process of triacylglycerol (TAG), the major storage lipids in plant seeds, through the esterification of diacylglycerol (DAG). To characterize the function of DGAT1 genes on the accumulation of oil and other seed composition traits in soybean, transgenic lines were generated via trans-acting siRNA technology, in which three DGAT1 genes (Glyma.13G106100, Glyma.09G065300, and Glyma.17G053300) were downregulated. The simultaneous downregulation of the three isoforms in transgenic lines was found to be associated with the reduction of seed oil concentrations by up to 18 mg/g (8.3%), which was correlated with increases in seed protein concentration up to 42 mg/g (11%). Additionally, the downregulations also influenced the fatty acid compositions in the seeds of transgenic lines through increasing the level of oleic acid, up to 121 mg/g (47.3%). The results of this study illustrate the importance of DGAT1 genes in determining the seed compositions in soybean through the development of new potential technology for manipulating seed quality in soybean to meet the demands for its various food and industrial applications.


Assuntos
Diacilglicerol O-Aciltransferase/metabolismo , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Diacilglicerol O-Aciltransferase/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Sementes/genética , Glycine max/genética
13.
Sci Rep ; 10(1): 21812, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311570

RESUMO

Soybean is an important source of protein, oil and carbohydrates, as well as other beneficial nutrients. A major function of proteins in nutrition is to supply adequate amounts of amino acids. Although they are essential for human nutrition, the sulfur-containing amino acids cysteine (Cys) and methionine (Met) are often limited and the genetic control of their content in soybean seeds is poorly characterized. This study aimed to characterize the phenotypic variation and identify quantitative trait loci (QTL) associated with Cys and Met content in a core set of 137 soybean lines, representative of the genetic diversity among Canadian short-season soybean, spanning maturity groups 000-II (MG000-II). Significant phenotypic differences were found among these lines for Cys, Met and Cys + Met content. Using both a mixed linear model and six multi-locus methods with a catalogue of 2.18 M SNPs, we report a total of nine QTLs and seventeen QTNs of which seven comprise promising candidate genes. This work allowed us to reproducibly detect multiple novel loci associated with sulfur-containing amino acid content. The markers and genes identified in this study may be useful for soybean genetic improvement aiming to increase Cys and Met content.


Assuntos
Cisteína/genética , Genoma de Planta , Glycine max/genética , Metionina/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sementes/metabolismo , Cisteína/metabolismo , Estudo de Associação Genômica Ampla , Metionina/metabolismo , Sementes/genética , Glycine max/metabolismo
14.
BMC Plant Biol ; 20(1): 485, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33096978

RESUMO

BACKGROUND: The production of soy-based food products requires specific physical and chemical characteristics of the soybean seed. Identification of quantitative trait loci (QTL) associated with value-added traits, such as seed weight, seed protein and sucrose concentration, could accelerate the development of competitive high-protein soybean cultivars for the food-grade market through marker-assisted selection (MAS). The objectives of this study were to identify and validate QTL associated with these value-added traits in two high-protein recombinant inbred line (RIL) populations. RESULTS: The RIL populations were derived from the high-protein cultivar 'AC X790P' (49% protein, dry weight basis), and two high-yielding commercial cultivars, 'S18-R6' (41% protein) and 'S23-T5' (42% protein). Fourteen large-effect QTL (R2 > 10%) were identified associated with seed protein concentration. Of these QTL, seven QTL were detected in both populations, and eight of them were co-localized with QTL associated with either seed sucrose concentration or seed weight. None of the protein-related QTL was found to be associated with seed yield in either population. Sixteen candidate genes with putative roles in protein metabolism were identified within seven of these protein-related regions: qPro_Gm02-3, qPro_Gm04-4, qPro_Gm06-1, qPro_Gm06-3, qPro_Gm06-6, qPro_Gm13-4 and qPro-Gm15-3. CONCLUSION: The use of RIL populations derived from high-protein parents created an opportunity to identify four novel QTL that may have been masked by large-effect QTL segregating in populations developed from diverse parental cultivars. In total, we have identified nine protein QTL that were detected either in both populations in the current study or reported in other studies. These QTL may be useful in the curated selection of new soybean cultivars for optimized soy-based food products.


Assuntos
Genes de Plantas/genética , Glycine max/genética , Valor Nutritivo/genética , Locos de Características Quantitativas/genética , Sementes/genética , Mapeamento Cromossômico , Genoma de Planta/genética , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável , Proteínas de Armazenamento de Sementes/genética
15.
Theor Appl Genet ; 133(6): 1967-1976, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32193569

RESUMO

KEY MESSAGE: Identification of marker-trait associations and trait-associated haplotypes in breeding germplasm identifies regions under selection and highlights changes in haplotype diversity over decades of soybean improvement in Canada. Understanding marker-trait associations using genome-wide association in soybean is typically carried out in diverse germplasm groups where identified loci are often not applicable to soybean breeding efforts. To address this challenge, this study focuses on defining marker-trait associations in breeding germplasm and studying the underlying haplotypes in these regions to assess genetic change through decades of selection. Phenotype data were generated for 175 accessions across multiple environments in Ontario, Canada. A set of 76,549 SNPs were used in the association analysis. A total of 23 genomic regions were identified as significantly associated with yield (5), days to maturity (5), seed oil (3), seed protein (5) and 100-seed weight (5), of which 14 are novel. Each significant region was haplotyped to assess haplotype diversity of the underlying genomic region, identifying ten regions with trait-associated haplotypes in the breeding germplasm. The range of genomic length for these regions (7.2 kb to 6.8 Mb) indicates variation in regional LD for the trait-associated regions. Six of these regions showed changes between eras of breeding, from historical to modern and experimental soybean accessions. Continued selection on these regions may necessitate introgression of novel parental genetic diversity as some haplotypes were fixed within the breeding germplasm. This finding highlights the importance of studying associations and haplotype diversity at a breeding program scale to understand breeders' selections and trends in soybean improvement over time. The haplotypes may also be used as a tool for selection of parental germplasm to inform breeder's decisions on further soybean improvement.


Assuntos
Genoma de Planta , Glycine max/genética , Haplótipos , Canadá , Estudos de Associação Genética , Marcadores Genéticos , Genótipo , Desequilíbrio de Ligação , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sementes
16.
Front Plant Sci ; 11: 624273, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33510761

RESUMO

Recent substantial advances in high-throughput field phenotyping have provided plant breeders with affordable and efficient tools for evaluating a large number of genotypes for important agronomic traits at early growth stages. Nevertheless, the implementation of large datasets generated by high-throughput phenotyping tools such as hyperspectral reflectance in cultivar development programs is still challenging due to the essential need for intensive knowledge in computational and statistical analyses. In this study, the robustness of three common machine learning (ML) algorithms, multilayer perceptron (MLP), support vector machine (SVM), and random forest (RF), were evaluated for predicting soybean (Glycine max) seed yield using hyperspectral reflectance. For this aim, the hyperspectral reflectance data for the whole spectra ranged from 395 to 1005 nm, which were collected at the R4 and R5 growth stages on 250 soybean genotypes grown in four environments. The recursive feature elimination (RFE) approach was performed to reduce the dimensionality of the hyperspectral reflectance data and select variables with the largest importance values. The results indicated that R5 is more informative stage for measuring hyperspectral reflectance to predict seed yields. The 395 nm reflectance band was also identified as the high ranked band in predicting the soybean seed yield. By considering either full or selected variables as the input variables, the ML algorithms were evaluated individually and combined-version using the ensemble-stacking (E-S) method to predict the soybean yield. The RF algorithm had the highest performance with a value of 84% yield classification accuracy among all the individual tested algorithms. Therefore, by selecting RF as the metaClassifier for E-S method, the prediction accuracy increased to 0.93, using all variables, and 0.87, using selected variables showing the success of using E-S as one of the ensemble techniques. This study demonstrated that soybean breeders could implement E-S algorithm using either the full or selected spectra reflectance to select the high-yielding soybean genotypes, among a large number of genotypes, at early growth stages.

17.
Theor Appl Genet ; 132(11): 3089-3100, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31384959

RESUMO

KEY MESSAGE: Genetic diversity in Canadian soybean is maintained over decades of selection in two public breeding programs. Breeders have used a portion of the genetic diversity available in germplasm collections. Both public and private breeding efforts have been critical for the development of soybean cultivars grown around the world. Global genetic diversity of soybean has been well characterized; however, this diversity is not well studied at the breeding program scale. The objective of this study was to characterize genetic diversity over decades of breeding in two public soybean breeding programs at the University of Guelph, Canada. To address this objective, a pedigree-related panel combining 296 soybean accessions from the Ridgetown and Guelph Campus breeding programs was studied. The accessions were genotyped using genotyping-by-sequencing, imputed using the GmHapMap reference genotypes resulting in more than 3.8M SNPs, further filtered to 77k SNPs. Population structure analysis did not identify structure between the breeding programs and historical germplasm. The linkage disequilibrium decay ranged from 400 to 600 kb on average in euchromatic regions. Nucleotide diversity over decades of breeding shows that historical accessions had the highest nucleotide diversity, with significant decreases corresponding to the initial breeding activity in Canada; however, genetic diversity has increased in the last 20 years in both breeding programs. Maturity gene E2 was nearly fixed for e2 in Ridgetown accessions, while unfixed in Guelph accessions. Comparison of the breeding programs to the USDA germplasm collection reveals that breeders have only used a portion of the available genetic diversity, allowing future breeders to exploit this untapped resource. The approach used in this study may be of interest to other breeding programs for evaluating changes in genetic diversity resulting from breeding activities.


Assuntos
Variação Genética , Genética Populacional , Glycine max/genética , Melhoramento Vegetal , Canadá , Genótipo , Desequilíbrio de Ligação , Linhagem , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA