Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 319(5860): 177-80, 2008 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-18187648

RESUMO

Many superconducting materials allow the penetration of magnetic fields in a mixed state in which the superfluid is threaded by a regular lattice of Abrikosov vortices, each carrying one quantum of magnetic flux. The phenomenological Ginzburg-Landau theory, based on the concept of characteristic length scales, has generally provided a good description of the Abrikosov vortex lattice state. We conducted neutron-scattering measurements of the vortex lattice form factor in the heavy-fermion superconductor cerium-cobalt-indium (CeCoIn5) and found that this form factor increases with increasing field-opposite to the expectations within the Abrikosov-Ginzburg-Landau paradigm. We propose that the anomalous field dependence of the form factor arises from Pauli paramagnetic effects around the vortex cores and from the proximity of the superconducting state to a quantum critical point.

2.
Phys Rev Lett ; 90(18): 187001, 2003 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-12786036

RESUMO

Using small-angle neutron scattering, we have imaged the magnetic flux line lattice (FLL) in the d-wave heavy-fermion superconductor CeCoIn5. At low fields we find a hexagonal FLL. Around 0.6 T this undergoes what is most likely a first-order transition to square symmetry, with the nearest neighbors oriented along the gap node directions. This orientation of the square FLL is consistent with theoretical predictions based on the d-wave order parameter symmetry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA