Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 18(4): e2103530, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34766456

RESUMO

Herein, it is shown that by engineering defects on Cex Si1- x O2- δ nanocomposites synthesized via flame spray pyrolysis, oxygen vacancies can be created with an increased density of trapped electrons, enhancing the formation of reactive oxygen species (ROSs) and hydroxyl radicals in an ozone-filled environment. Spectroscopic analysis and density functional theory calculations indicate that two-electron oxygen vacancies (OV 0 ) or peroxide species, and their degree of clustering, play a critical role in forming reactive radicals. It is also found that a higher Si content in the binary oxide imposes a high OV 0 ratio and, consequently, higher catalytic activity. Si inclusion in the nanocomposite appears to stabilize the surface oxygen vacancies as well as increase the reactive electron density at these sites. A mechanistic study on effective ROSs generated during catalytic ozonation reveals that the hydroxyl radical is the most effective ROS for organic degradation and is formed primarily through H2 O2 generation in the presence of the OV 0 . Examining the binary oxides offers insights on the contribution of oxygen vacancies and their state of charge to catalytic reactions, in this instance for the catalytic ozonation of organic compounds.

2.
ACS Omega ; 6(39): 25506-25517, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34632208

RESUMO

Phenol is a nocuous water pollutant that threatens human health and the ecological environment. CoOx-doped micron-sized hollow MgO rods were prepared for the treatment of phenol wastewater by catalytic ozonation. Magnesium sources, precipitants, initial precursor concentration, Co/Mg molar ratio, and catalyst calcination temperature were optimized to obtain the best catalysts. Prepared catalysts were also well characterized by various methods to analyze their structure and physical and chemical properties. In this process, CoOx/MgO with the largest large surface area (151.3 m3/g) showed the best catalytic performance (100 and 79.8% of phenol and chemical oxygen demand (COD) removal ratio, respectively). The hydrolysis of CoOx/MgO plays a positive role in the degradation of phenol. The catalytic mechanism of the degradation of O3 to free radicals over catalysts has been investigated by in situ electronic paramagnetic resonance (EPR). The catalyst can be reused at least five times without any activity decline. The prepared CoOx/MgO catalyst also showed excellent catalytic performance for removal and degradation of ciprofloxacin, norfloxacin, and salicylic acid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA