Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Microb Pathog ; 169: 105664, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35803497

RESUMO

A large number of infections are caused by multi-resistant bacteria worldwide, increasing to around 700,000 deaths per year. Because of that, many strategies are being developed to combat the resistance of microorganisms to drugs, and recently, chalcones have been studied for this purpose. Chalcones are known as α, ß-unsaturated ketones, characterized by having the presence of two aromatic rings that are joined by a three-carbon chain. They are a class of compounds considered an exceptional model due to chemical simplicity and a wide variety of biological activities, including anticancer, anti-inflammatory, antioxidants, antimicrobials, anti-tuberculosis, anti-HIV, antimalarial, anti-allergic, antifungal, antibacterial, and antileishmaniasis. The objective of this work was to evaluate the antibacterial and antibiotic modifying activity of chalcone (2E)-1-(4'-aminophenyl)-3-(4-methoxyphenyl)-prop-2-en-1-one against the bacteria Staphylococcus aureus carrying a NorA and MepA efflux pump. The results showed that chalcone showed no toxicity on macrophage cells and was able to synergistically modulate the action of Norfloxacin and Ethidium Bromide against the bacteria Staphylococcus aureus 1199B and K2068, respectively. Furthermore, the theoretical physicochemical and pharmacokinetic properties of chalcone showed that it did not present a severe risk of toxicity such as genetic mutation or cardiotoxicity, constituting an excellent pharmacological active ingredient.


Assuntos
Chalcona , Chalconas , Infecções Estafilocócicas , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Chalcona/farmacologia , Chalconas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo
2.
Fundam Clin Pharmacol ; 36(6): 1066-1082, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35475507

RESUMO

In recent years, bacterial resistance to traditional drugs has increased, and the need to find new effective antibiotics to treat infections caused by multidrug-resistant bacteria has consequently become more important. The current study aimed to evaluate the potentiation of antibiotic activity and efflux pumps inhibition by (2E)-1-(4-aminophenyl)-3-(4-fluorophenyl)prop-2-en-1-one (PA-Fluorine) against the standard and resistant bacterial strains of Staphylococcus aureus and Escherichia coli. The association between PA-Fluorine and ampicillin reduced the minimum inhibitory concentration (MIC), showing a synergistic effect against S. aureus. For E. coli, PA-Fluorine did not show any significant results when associated with ampicillin. Ciprofloxacin and chlorpromazine showed synergy with PA-Fluorine on the two studied strains. An efflux pump mechanism was involved in the mechanism of action of chlorpromazine, norfloxacin, and ethidium bromide. PA-Fluorine synergistically modulated norfloxacin and bromide. It was thus concluded that PA-Fluorine has the potential to enhance antibacterial activity when combined with antibiotics. Molecular docking studies showed the effect of intermolecular interactions of PA-Fluorine on the NorA and MepA efflux pumps. Physicochemical and pharmacokinetic properties were also obtained by ADMET studies for this chalcone, which presents be a strong candidate as an efflux pump inhibitor.


Assuntos
Antibacterianos , Simportadores , Ampicilina/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Clorpromazina/farmacologia , Escherichia coli/metabolismo , Flúor/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Norfloxacino/farmacologia , Staphylococcus aureus , Simportadores/metabolismo
3.
Membranes (Basel) ; 10(9)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825411

RESUMO

(1) Background: Infections by Candida species represent a serious threat to the health of immunocompromised individuals. Evidence has indicated that nerolidol has significant antifungal properties. Nonetheless, its use is restricted due to a low water solubility and high photosensitivity. The incorporation into liposomes may represent an efficient alternative to improve the physicochemical and biopharmaceutical properties of this compound. The present study aimed to characterize the antifungal properties of liposomal nerolidol, alone or in combination with fluconazole. Of note, this is the first study reporting the antifungal activity of liposomal nerolidol and its potentiating effect in association with fluconazole. (2) Methods: The Inhibitory Concentration 50%-IC50 and minimum fungicide concentrations (MFC) of the substances against Candida albicans (CA), Candida tropicalis (CT), and Candida krusei (CK) were established by subculture in a solid medium. To evaluate the antifungal-enhancing effect, the MFC of fluconazole was determined in the presence or absence of subinhibitory concentrations of nerolidol (free or liposomal). The analysis of fungal dimorphism was performed through optical microscopy and the characterization of liposomes was carried out considering the vesicular size, polydispersion index, and zeta medium potential, in addition to a scanning electron microscopy analysis. (3) Results: The physicochemical characterization revealed that liposomes were obtained as homogenous populations of spherical vesicles. The data obtained in the present study indicate that nerolidol acts as an antifungal agent against Candida albicans and Candida tropicalis, in addition to potentiating (only in the liposomal form) the effect of fluconazole. However, the compound had little inhibitory effect on fungal dimorphism. (4) Conclusions: The incorporation of nerolidol into liposomes improved its antifungal-modulating properties.

4.
Antibiotics (Basel) ; 9(1)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947644

RESUMO

This study is a pioneer in reporting the antibacterial properties of the species Croton ceanothifolius Baill. The genus Croton belongs to the family Euphorbiaceae composed of numerous species with documented biological activities. However, the pharmacological properties of C. ceanothifolius remain poorly understood. The leaves of this plant were submitted to hydrodistillation for essential oil (CcEO) extraction and the phytochemical characterization of the oil was performed by GC/MS. The minimum inhibitory concentration of the CcEO was determined for the evaluation of antibacterial activity against multiresistant strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. The antibiotic-modulating activity of the oil, in combination with antibiotics, was also evaluated. The combination of the CcEO with penicillin, norfloxacin, and gentamicin presented a synergistic effect. This effect was more significant for the association with antibiotics of the quinolone and aminoglycoside classes against Escherichia coli. The association of oil with gentamicin showed better results with regard to the Gram-positive strain. The association of the oil with norfloxacin against P. aeruginosa also showed synergism, but the association with penicillin did not change the effect of this antibiotic. Thus, it is concluded that C. ceanothifolius essential oil selectively potentiates the action of antibiotics against multiresistant strains.

5.
Antibiotics (Basel) ; 8(4)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795165

RESUMO

The objective of this work was to evaluate the phytochemical composition and the antibacterial and antibiotic-modulating activities of the essential oils of Eugenia brasiliensis Lam (OEEb) and Piper mosenii C. DC (OEPm) singly or in association with blue LED (Light-emitting diode) light. The antibacterial and antibiotic-modulatory activities of the essential oils on the activity of aminoglycosides were evaluated to determine the minimum inhibitory concentration (MIC, µg/mL) in the presence or absence of exposure to blue LED light. The chemical analysis showed α-pinene and bicyclogermacrene as major constituents of OEPm, whereas α-muurolol was the main compound of OEEb. Both OEEb and OEPm showed MIC ≥ 512 µg/mL against the strains under study. However, the association of these oils with the blue LED light enhanced the action of the aminoglycosides amikacin and gentamicin. In conclusion, the association of aminoglycosides with the blue LED light and essential oils was effective against resistant bacteria.

6.
Pathogens ; 7(4)2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30544654

RESUMO

Mauritia flexuosa (buriti) is a typical Brazilian palm tree found in swampy regions with many plant forms. The fruit has various purposes with the pulps to the seeds being used for ice creams, sweets, creams, jellies, liqueurs, and vitamin production. A physicochemical characterization of the fixed pulp oil and its antibacterial and aminoglycoside antibiotic modifying activity against Gram-positive and Gram-negative multiresistant bacterial strains were performed using broth microdilution assays. Physical properties, such as moisture, pH, acidity, peroxide index, relative density, and refractive index, indicated oil stability and chemical quality. In the GC/MS chemical composition analysis, a high content of unsaturated fatty acids (89.81%) in relation to saturated fatty acids (10.19%) was observed. Oleic acid (89.81%) was the main fatty acid identified. In the antibacterial test, the fixed oil obtained the Minimum Inhibitory Concentration (MIC) ≥ 1024 µg/mL for all standard and multiresistant bacterial strains. The synergic effect of fixed pulp oil combined was observed only in Staphylococcus aureus SA⁻10, with an MIC reduction of the gentamicin and amikacin by 40.00% and 60.55%, respectively. The data indicates the M. flexuosa fixed oil as a valuable source of oleic acid and modulator of aminoglycoside activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA