Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fish Dis ; : e13955, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587083

RESUMO

During recent years, there has been a renewed interest in establishing farming of Atlantic cod (Gadus morhua) in Norway. However, a fatal abdominal disorder compromises animal welfare and causes economic losses. A similar problem was present during a previous attempt to establish Atlantic cod farming more than a decade ago. In this paper, we provide the first in-depth description of this intestinal disorder, which is correctly denoted 'strangulating obstruction'. In affected fish, part of the intestine is permanently entrapped (incarcerated) under fibrous strands in the mesentery. The entrapment interferes with blood flow and physically blocks the intestine, causing a strangulating obstruction with severe venous congestion and ischemia of the intestinal wall. Furthermore, comparison of macroscopical and histological anatomy of farmed and wild Atlantic cod is presented and risk factors associated with the anatomical differences are discussed.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38419616

RESUMO

Background: Shaft fractures of the femur are commonly treated with intramedullary nailing, which can release bone marrow emboli into the bloodstream. Emboli can travel to the lungs, impairing gas exchange and causing inflammation. Occasionally, emboli traverse from the pulmonary to the systemic circulation, hindering perfusion and resulting in injuries such as heart and brain infarctions, known as fat embolism syndrome. We studied the extent of systemic bone marrow embolization in a pig model. Methods: Twelve anesthetized pigs underwent bilateral intramedullary nailing of the femur, while 3 animals served as sham controls. Monitoring included transesophageal echocardiography (TEE), pulse oximetry, electrocardiography, arterial blood pressure measurement, and blood gas and troponin-I analysis. After surgery, animals were monitored for 240 minutes before euthanasia. Post mortem, the heart, lungs, and brain were biopsied. Results: Bone marrow emboli were found in the heart and lungs of all 12 of the pigs that underwent intramedullary nailing and in the brains of 11 of them. No emboli were found in the sham group. The pigs subjected to intramedullary nailing exhibited significant hypoxia (PaO2/FiO2 ratio, 410 mm Hg [95% confidence interval (CI), 310 to 510) compared with the sham group (594 mm Hg [95% CI, 528 to 660]). The nailing group exhibited ST-segment alterations consistent with myocardial ischemia and a significant increase in the troponin-I level compared with the sham group (1,580 ng/L [95% CI, 0 to 3,456] versus 241 ng/L [95% CI, 0 to 625] at the 240-minute time point; p = 0.005). TEE detected emboli in the right ventricular outflow tract, but not systemically, in the nailing group. Conclusions: Bilateral intramedullary nailing caused bone marrow emboli in the lungs and systemic emboli in the heart and brain in this pig model. The observed clinical manifestations were consistent with coronary and pulmonary emboli. TEE detected pulmonary but not systemic embolization. Clinical Relevance: Femoral intramedullary nailing in humans is likely to result in embolization as described in our pig model. Focused monitoring is necessary for detection of fat embolism syndrome. Absence of visual emboli in the left ventricle on TEE does not exclude the occurrence of systemic bone marrow emboli.

3.
Animals (Basel) ; 13(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37508164

RESUMO

Stunning by carbon dioxide (CO2) inhalation is controversial because it is associated with vigorous movements and behaviours which may or may not be conscious reactions. Furthermore, it is unknown whether some behaviours might indicate the transition into unconsciousness. Our study objective was to investigate the loss of consciousness during CO2 stunning by linking physiological variables (in particular pH, PaO2 and PaCO2) to the onset of observed behaviours. A total of 11 cross-bred pigs were studied. A tracheostomy tube, venous and arterial cannulae were placed under sevoflurane anaesthesia. After recovery from this, and a "wash out" period of at least 30 min, arterial blood samples were taken (and baseline values established) before 90-95% CO2 in medical air was administered through the tracheostomy tube. Subsequent behaviours were video-recorded and key physiological variables were evaluated using an anaesthetic monitor and the frequent sampling of arterial blood (albeit with inconsistent inter-sample intervals). After the study, behaviours were classified in an ethogram. At the onset of behaviours categorised as "vigorous movement extremities", "opisthotonos" and "agonal gasping" pH values (range) were: 6.74-7.34; 6.66-6.96 and 6.65-6.87, while PaCO2 (kPa) was 4.6-42.2, 24.4-51.4 and 29.1-47.6. Based upon these values, we conclude that the pigs were probably unconscious at the onset of "opisthotonos" and "agonal gasping", but some were probably conscious at the onset of "vigorous movements".

4.
Acta Vet Scand ; 64(1): 13, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668456

RESUMO

BACKGROUND: Chronic wasting disease (CWD) is a prion disease of cervids first reported in North America in the 1960s. In Europe, CWD was first diagnosed in 2016 in a wild reindeer in Norway. Detection of two more cases in the same mountain area led to the complete culling of this partially confined reindeer population of about 2400 animals. A total of 19 CWD positive animals were identified. The affected area is extensively used for the grazing of sheep during summers. There are many mineral licks intended for sheep in the area, but these have also been used by reindeer. This overlap in area use raised concerns for cross-species prion transmission between reindeer and sheep. In this study, we have used global positioning system (GPS) data from sheep and reindeer, including tracking one of the CWD positive reindeer, to investigate spatial and time-relevant overlaps between these two species. Since prions can accumulate in lymphoid follicles following oral uptake, samples of gut-associated lymphoid tissue (GALT) from 425 lambs and 78 adult sheep, which had grazed in the region during the relevant timeframe, were analyzed for the presence of prions. The recto-anal mucosa associated lymphoid tissue (RAMALT) from all the animals were examined by histology, immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA), and the ileal Peyer's patch (IPP) from a subsample of 37 lambs were examined by histology and IHC, for the detection of prions. RESULTS: GPS data showed an overlap in area use between the infected reindeer herd and the sheep. In addition, the GPS positions of an infected reindeer and some of the sampled sheep showed temporospatial overlap. No prions were detected in the GALT of the investigated sheep even though the mean lymphoid follicle number in RAMALT and IPP samples were high. CONCLUSION: The absence of prions in the GALT of sheep that have shared pasture with CWD-infected reindeer, may suggest that transmission of this novel CWD strain to sheep does not easily occur under the conditions found in these mountains. We document that the lymphoid follicle rich RAMALT could be a useful tool to screen for prions in sheep.


Assuntos
Cervos , Príons , Rena , Doenças dos Ovinos , Doença de Emaciação Crônica , Animais , Noruega , Ovinos , Doença de Emaciação Crônica/diagnóstico , Doença de Emaciação Crônica/epidemiologia
5.
PLoS One ; 17(1): e0261845, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35061740

RESUMO

A number of inherited ataxias is known in humans, with more than 250 loci implicated, most of which are included in human ataxia screening panels. Anecdotally, cases of ataxia in the Norwegian elkhound black have been known for the last 40 years. Affected puppies from three litters were clinically and neurologically examined, and postmortem samples were collected for morphological studies, including ultrastructural analyses. The puppies displayed vestibulocerebellar neurological signs and had degenerative histopathological alterations in cerebellum and brain stem. Three affected dogs, each from different litters, as well as both parents and one healthy littermate from each litter, were whole genome sequenced. Through variant calling we discovered a disease-associated 1 bp deletion in HACE1 (CFA12), resulting in a frameshift at codon 333 and a premature stop codon at codon 366. The perfect association combined with the predicted significant molecular effect, strongly suggest that we have found the causative mutation for Norwegian elkhound black ataxia. We have identified a novel candidate gene for ataxia where dogs can serve as a spontaneous model for improved understanding of ataxia, also in human.


Assuntos
Ataxia/genética , Sequência de Bases , Doenças do Cão/genética , Modelos Genéticos , Deleção de Sequência , Ubiquitina-Proteína Ligases/genética , Animais , Ataxia/enzimologia , Ataxia/patologia , Doenças do Cão/enzimologia , Doenças do Cão/patologia , Cães , Masculino , Ubiquitina-Proteína Ligases/metabolismo
6.
J Vet Intern Med ; 36(2): 672-678, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35019187

RESUMO

BACKGROUND: Tongue atrophy with wrinkling as a clinical sign of inherited polyneuropathies has not been reported in dogs. OBJECTIVES: Clinically describe tongue atrophy as well as morphology of the tongue and hypoglossal nerve in Alaskan malamute polyneuropathy (AMPN). ANIMALS: Six client-owned Alaskan malamute dogs diagnosed with AMPN, all homozygous for the causative mutation in the N-myc downstream-regulated gene 1 (NDRG1) and 1 neurologically normal control Alaskan malamute. METHODS: Prospective case study. Clinical and neurological examinations were performed on affected dogs. Necropsy samples from the tongue muscle and hypoglossal nerve were examined by light and electron microscopy. RESULTS: All affected dogs had abnormal wrinkles and grooves on the dorsal surface of the tongue, a clinical sign not described previously in dogs with AMPN. Electromyography of the tongue performed in 2 dogs showed spontaneous activity. Five affected dogs underwent necropsy studies. Histopathology of the tongue showed groups of angular atrophic myofibers and changes in the hypoglossal nerve included thinly myelinated fibers, small onion bulbs, folded myelin, and axonal degeneration. CONCLUSION AND CLINICAL IMPORTANCE: Histopathologic changes in the tongue and hypoglossal nerve were consistent with previously reported changes in skeletal muscle and other nerves from dogs with AMPN. Therefore, we conclude that macroscopic tongue atrophy is part of the disease phenotype of AMPN and should be considered a potential clinical sign in dogs with polyneuropathies.


Assuntos
Doenças do Cão , Polineuropatias , Animais , Atrofia/patologia , Atrofia/veterinária , Doenças do Cão/diagnóstico , Doenças do Cão/genética , Doenças do Cão/patologia , Cães , Mutação , Polineuropatias/genética , Polineuropatias/patologia , Polineuropatias/veterinária , Língua/patologia
8.
Neuromuscul Disord ; 31(1): 56-68, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33334662

RESUMO

Mutations in the N-myc downstream-regulated gene 1 (NDRG1) cause degenerative polyneuropathy in ways that are poorly understood. We have investigated Alaskan Malamute dogs with neuropathy caused by a missense mutation in NDRG1. In affected animals, nerve levels of NDRG1 protein were reduced by more than 70% (p< 0.03). Nerve fibers were thinly myelinated, loss of large myelinated fibers was pronounced and teased fiber preparations showed both demyelination and remyelination. Inclusions of filamentous material containing actin were present in adaxonal Schwann cell cytoplasm and Schmidt-Lanterman clefts. This condition strongly resembles the human Charcot-Marie-Tooth type 4D. However, the focally folded myelin with adaxonal infoldings segregating the axon found in this study are ultrastructural changes not described in the human disease. Furthermore, lipidomic analysis revealed a profound loss of peripheral nerve lipids. Our data suggest that the low levels of mutant NDRG1 is insufficient to support Schwann cells in maintaining myelin homeostasis.


Assuntos
Proteínas de Ciclo Celular , Doença de Charcot-Marie-Tooth/veterinária , Doenças do Cão/genética , Peptídeos e Proteínas de Sinalização Intracelular , Células de Schwann/metabolismo , Animais , Doença de Charcot-Marie-Tooth/genética , Cães , Feminino , Masculino , Mutação/genética , Mutação de Sentido Incorreto , Bainha de Mielina , Polineuropatias/genética
9.
FASEB J ; 34(2): 2359-2375, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31907995

RESUMO

Studies in mice with ablation of Prnp, the gene that encodes the cellular prion protein (PrPC ), have led to the hypothesis that PrPC is important for peripheral nerve myelin maintenance. Here, we have used a nontransgenic animal model to put this idea to the test; namely, goats that, due to a naturally occurring nonsense mutation, lack PrPC . Teased nerve fiber preparation revealed a demyelinating pathology in goats without PrPC . Affected nerves were invaded by macrophages and T cells and displayed vacuolated fibers, shrunken axons, and onion bulbs. Peripheral nerve lipid composition was similar in young goats with or without PrPC , but markedly different between corresponding groups of adult goats, reflecting the progressive nature of the neuropathy. This is the first report of a subclinical demyelinating polyneuropathy caused by loss of PrPC function in a nontransgenic mammal.


Assuntos
Doenças Desmielinizantes/imunologia , Cabras/imunologia , Bainha de Mielina/imunologia , Polineuropatias/imunologia , Proteínas PrPC/deficiência , Animais , Doenças Desmielinizantes/patologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Bainha de Mielina/patologia , Polineuropatias/patologia , Proteínas PrPC/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia
10.
Vet Res ; 51(1): 1, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924264

RESUMO

Prion diseases are progressive and fatal, neurodegenerative disorders described in humans and animals. According to the "protein-only" hypothesis, the normal host-encoded prion protein (PrPC) is converted into a pathological and infectious form (PrPSc) in these diseases. Transgenic knockout models have shown that PrPC is a prerequisite for the development of prion disease. In Norwegian dairy goats, a mutation (Ter) in the prion protein gene (PRNP) effectively blocks PrPC synthesis. We inoculated 12 goats (4 PRNP+/+, 4 PRNP+/Ter, and 4 PRNPTer/Ter) intracerebrally with goat scrapie prions. The mean incubation time until clinical signs of prion disease was 601 days post-inoculation (dpi) in PRNP+/+ goats and 773 dpi in PRNP+/Ter goats. PrPSc and vacuolation were similarly distributed in the central nervous system (CNS) of both groups and observed in all brain regions and segments of the spinal cord. Generally, accumulation of PrPSc was limited in peripheral organs, but all PRNP+/+ goats and 1 of 4 PRNP+/Ter goats were positive in head lymph nodes. The four PRNPTer/Ter goats remained healthy, without clinical signs of prion disease, and were euthanized 1260 dpi. As expected, no accumulation of PrPSc was observed in the CNS or peripheral tissues of this group, as assessed by immunohistochemistry, enzyme immunoassay, and real-time quaking-induced conversion. Our study shows for the first time that animals devoid of PrPC due to a natural mutation do not propagate prions and are resistant to scrapie. Clinical onset of disease is delayed in heterozygous goats expressing about 50% of PrPC levels.


Assuntos
Resistência à Doença/genética , Doenças das Cabras/genética , Proteínas PrPC/deficiência , Scrapie/genética , Animais , Feminino , Cabras
11.
BMC Vet Res ; 15(1): 121, 2019 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-31029158

RESUMO

BACKGROUND: Mutations in the N-myc downstream-regulated gene 1 (NDRG1) can cause degenerative polyneuropathy in humans, dogs, and rodents. In humans, this motor and sensory neuropathy is known as Charcot-Marie-Tooth disease type 4D, and it is assumed that analogous canine diseases can be used as models for this disease. NDRG1 is also regarded as a metastasis-suppressor in several malignancies. The tissue distribution of NDRG1 has been described in humans and rodents, but this has not been studied in the dog. RESULTS: By immunolabeling and Western blotting, we present a detailed mapping of NDRG1 in dog tissues and primary canine Schwann cell cultures, with particular emphasis on peripheral nerves. High levels of phosphorylated NDRG1 appear in distinct subcellular localizations of the Schwann cells, suggesting signaling-driven rerouting of the protein. In a nerve from an Alaskan malamute homozygous for the disease-causing Gly98Val mutation in NDRG1, this signal was absent. Furthermore, NDRG1 is present in canine epithelial cells, predominantly in the cytosolic compartment, often with basolateral localization. Constitutive expression also occurs in mesenchymal cells, including developing spermatids that are transiently positive for NDRG1. In some cells, NDRG1 localize to centrosomes. CONCLUSIONS: Overall, canine NDRG1 shows a cell and context-dependent localization. Our data from peripheral nerves and primary Schwann cell cultures suggest that the subcellular localization of NDRG1 in Schwann cells is dynamically influenced by signaling events leading to reversible phosphorylation of the protein. We propose that disease-causing mutations in NDRG1 can disrupt signaling in myelinating Schwann cells, causing disturbance in myelin homeostasis and axonal-glial cross talk, thereby precipitating polyneuropathy.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Doenças do Cão/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Polineuropatias/veterinária , Células de Schwann/metabolismo , Animais , Anticorpos , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cães , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Células-Tronco Mesenquimais , Mutação , Polineuropatias/genética , Polineuropatias/metabolismo , Isoformas de Proteínas , Espermátides
12.
Front Mol Biosci ; 5: 1, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29417049

RESUMO

The cellular prion protein PrPC is highly expressed in neurons, but also present in non-neuronal tissues, including the testicles and spermatozoa. Most immune cells and their bone marrow precursors also express PrPC. Clearly, this protein operates in highly diverse cellular contexts. Investigations into putative stress-protective roles for PrPC have resulted in an array of functions, such as inhibition of apoptosis, stimulation of anti-oxidant enzymes, scavenging roles, and a role in nuclear DNA repair. We have studied stress resilience of spermatozoa and peripheral blood mononuclear cells (PBMCs) derived from non-transgenic goats that lack PrPC (PRNPTer/Ter) compared with cells from normal (PRNP+/+) goats. Spermatozoa were analyzed for freeze tolerance, DNA integrity, viability, motility, ATP levels, and acrosome intactness at rest and after acute stress, induced by Cu2+ ions, as well as levels of reactive oxygen species (ROS) after exposure to FeSO4 and H2O2. Surprisingly, PrPC-negative spermatozoa reacted similarly to normal spermatozoa in all read-outs. Moreover, in vitro exposure of PBMCs to Doxorubicin, H2O2 and methyl methanesulfonate (MMS), revealed no effect of PrPC on cellular survival or global accumulation of DNA damage. Similar results were obtained with human neuroblastoma (SH-SY5Y) cell lines stably expressing varying levels of PrPC. RNA sequencing of PBMCs (n = 8 of PRNP+/+ and PRNPTer/Ter) showed that basal level expression of genes encoding DNA repair enzymes, ROS scavenging, and antioxidant enzymes were unaffected by the absence of PrPC. Data presented here questions the in vitro cytoprotective roles previously attributed to PrPC, although not excluding such functions in other cell types or tissues during inflammatory stress.

13.
Front Immunol ; 8: 1722, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29270176

RESUMO

A naturally occurring mutation in the PRNP gene of Norwegian dairy goats terminates synthesis of the cellular prion protein (PrPC), rendering homozygous goats (PRNPTer/Ter) devoid of the protein. Although PrPC has been extensively studied, particularly in the central nervous system, the biological role of PrPC remains incompletely understood. Here, we examined whether loss of PrPC affects the initial stage of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Acute pulmonary inflammation was induced by intravenous injection of LPS (Escherichia coli O26:B6) in 16 goats (8 PRNPTer/Ter and 8 PRNP+/+). A control group of 10 goats (5 PRNPTer/Ter and 5 PRNP+/+) received sterile saline. Systemic LPS challenge induced sepsis-like clinical signs including tachypnea and respiratory distress. Microscopic examination of lungs revealed multifocal areas with alveolar hemorrhages, edema, neutrophil infiltration, and higher numbers of alveolar macrophages, with no significant differences between PRNP genotypes. A total of 432 (PRNP+/+) and 596 (PRNPTer/Ter) genes were differentially expressed compared with the saline control of the matching genotype. When assigned to gene ontology categories, biological processes involved in remodeling of the extracellular matrix (ECM), were exclusively enriched in PrPC-deficient goats. These genes included a range of collagen-encoding genes, and proteases such as matrix metalloproteinases (MMP1, MMP2, MMP14, ADAM15) and cathepsins. Several proinflammatory upstream regulators (TNF-α, interleukin-1ß, IFN-γ) showed increased activation scores in goats devoid of PrPC. In conclusion, LPS challenge induced marked alterations in the lung tissue transcriptome that corresponded with histopathological and clinical findings in both genotypes. The increased activation of upstream inflammatory regulators and enrichment of ECM components could reflect increased inflammation in the absence of PrPC. Further studies are required to elucidate whether these alterations may affect the later reparative phase of ALI.

14.
PLoS One ; 12(6): e0179881, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28651013

RESUMO

The cellular prion protein (PrPC) has been extensively studied because of its pivotal role in prion diseases; however, its functions remain incompletely understood. A unique line of goats has been identified that carries a nonsense mutation that abolishes synthesis of PrPC. In these animals, the PrP-encoding mRNA is rapidly degraded. Goats without PrPC are valuable in re-addressing loss-of-function phenotypes observed in Prnp knockout mice. As PrPC has been ascribed various roles in immune cells, we analyzed transcriptomic responses to loss of PrPC in peripheral blood mononuclear cells (PBMCs) from normal goat kids (n = 8, PRNP+/+) and goat kids without PrPC (n = 8, PRNPTer/Ter) by mRNA sequencing. PBMCs normally express moderate levels of PrPC. The vast majority of genes were similarly expressed in the two groups. However, a curated list of 86 differentially expressed genes delineated the two genotypes. About 70% of these were classified as interferon-responsive genes. In goats without PrPC, the majority of type I interferon-responsive genes were in a primed, modestly upregulated state, with fold changes ranging from 1.4 to 3.7. Among these were ISG15, DDX58 (RIG-1), MX1, MX2, OAS1, OAS2 and DRAM1, all of which have important roles in pathogen defense, cell proliferation, apoptosis, immunomodulation and DNA damage response. Our data suggest that PrPC contributes to the fine-tuning of resting state PBMCs expression level of type I interferon-responsive genes. The molecular mechanism by which this is achieved will be an important topic for further research into PrPC physiology.


Assuntos
Cabras/genética , Cabras/imunologia , Interferon Tipo I/genética , Proteínas PrPC/deficiência , Animais , Linhagem Celular , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Proteínas de Homeodomínio/genética , Humanos , Leucócitos/imunologia , Masculino , Camundongos , Proteínas PrPC/genética , Proteínas PrPC/imunologia
15.
Acta Vet Scand ; 59(1): 26, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28464941

RESUMO

A homozygous mutation has been identified in the N-myc downstream-regulated gene 1 (NDRG1) in recent cases of polyneuropathy in Alaskan malamute dogs from the Nordic countries and USA. The objective of the present study was to determine if cases diagnosed 30-40 years ago with polyneuropathy in the Alaskan malamute breed in Norway had the same hereditary disease as the recent cases. Fourteen historical cases and 12 recently diagnosed Alaskan malamute dogs with hereditary polyneuropathy, and their parents and littermates (n = 88) were included in this study (total n = 114). After phenotyping of historical and recent cases, NDRG1 genotyping was performed using DNA extracted from archived material from five Norwegian dogs affected by the disease in the late 1970s and 1980s. In addition, pedigrees were analysed. Our study concluded that historical and recent phenotypic polyneuropathy cases were carrying the same NDRG1-mutation. The pedigree analysis showed that all affected Alaskan malamute cases with polyneuropathy could be traced back to one common ancestor of North American origin. By this study, a well-documented example of the silent transmission of recessive disease-causing alleles through many generations is provided, demonstrated by the re-emergence of a phenotypically and genetically uniform entity in the Scandinavian Alaskan malamute population.


Assuntos
Doenças do Cão/genética , Predisposição Genética para Doença , Polineuropatias/veterinária , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cães , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linhagem , Polineuropatias/genética
16.
BMC Vet Res ; 12(1): 241, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27793136

RESUMO

BACKGROUND: Sepsis is a serious health problem associated with a range of infectious diseases in animals and humans. Early events of this syndrome can be mimicked by experimental administration of lipopolysaccharides (LPS). Compared with mice, small ruminants and humans are highly sensitive to LPS, making goats valuable in inflammatory models. We performed a longitudinal study in eight Norwegian dairy goats that received LPS (0.1 µg/kg, Escherichia coli O26:B6) intravenously. A control group of five goats received corresponding volumes of sterile saline. Clinical examinations were performed continuously, and blood samples were collected throughout the trial. RESULTS: Characteristic signs of acute sepsis, such as sickness behavior, fever, and leukopenia were observed within 1 h of LPS administration. A high-throughput longitudinal gene expression analysis of circulating leukocytes was performed, and genes associated with the acute phase response, type I interferon signaling, LPS cascade and apoptosis, in addition to cytokines and chemokines were targeted. Pro-inflammatory genes, such as IL1B, CCL3 and IL8, were significantly up-regulated. Interestingly, increased mRNA levels of seven interferon stimulated genes (ISGs) were observed peaking at 2 h, corroborating the increasing evidence that ISGs respond immediately to bacterial endotoxins. A slower response was manifested by four extrahepatic acute phase proteins (APP) (SAA3, HP, LF and LCN2) reaching maximum levels at 5 h. CONCLUSIONS: We report an immediate induction of ISGs in leukocytes in response to LPS supporting a link between the interferon system and defense against bacterial infections. The extrahepatic expression of APPs suggests that leukocytes contribute to synthesis of these proteins at the beginning of a systemic inflammation. Taken together, these findings provide insights into the dynamic regulation of innate immune genes, as well as raising new questions regarding the importance of ISGs and extrahepatic APPs in leukocytes after systemic endotoxin challenge.


Assuntos
Endotoxinas/imunologia , Imunidade Inata/genética , Leucócitos/imunologia , Animais , Feminino , Cabras , Interferons/metabolismo
17.
Vet Immunol Immunopathol ; 169: 79-84, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26827843

RESUMO

The amount, distribution and phenotype of ovine NCR1+ cells were investigated during developing GALT from day 70 of gestation. Antibodies against CD3 and CD79 were used to identify the compartments of GALT, and the localization of NCR1+ cells were correlated within these structures. Markers CD34 and c-kit, in addition to Ki67, were used to investigate possible origin and the stage of development of the NCR1+ cells. NCR1+ cells were present as single cells in the subepithelial tissue as early as 70 days of gestation, and were predominantly present in the T cell rich IFAs and domes as these intestinal wall compartments developed. While NCR1+ cells proliferated more intensively at mid-gestation (70-104 days), the number of NCR1+ cells also expressing c-kit, increased at the end of gestation. In conclusion, NCR1+ cells appeared early in T cell areas of the gut and displayed a phenotype consistent with intermediate stages of cNK cells and/or a subpopulation of ILC22.


Assuntos
Intestinos/embriologia , Tecido Linfoide/embriologia , Receptor 1 Desencadeador da Citotoxicidade Natural/biossíntese , Proteínas Proto-Oncogênicas c-kit/biossíntese , Animais , Mucosa Intestinal/citologia , Mucosa Intestinal/embriologia , Intestinos/citologia , Subpopulações de Linfócitos/citologia , Subpopulações de Linfócitos/metabolismo , Linfócitos/citologia , Linfócitos/metabolismo , Tecido Linfoide/citologia , Fenótipo , Ovinos
18.
Front Immunol ; 6: 450, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26388873

RESUMO

Despite intensive studies since the 1990s, the physiological role of the cellular prion protein (PrP(C)) remains elusive. Here, we present a novel concept suggesting that PrP(C) contributes to immunological quiescence in addition to cell protection. PrP(C) is highly expressed in diverse organs that by multiple means are particularly protected from inflammation, such as the brain, eye, placenta, pregnant uterus, and testes, while at the same time it is expressed in most cells of the lymphoreticular system. In this paradigm, PrP(C) serves two principal roles: to modulate the inflammatory potential of immune cells and to protect vulnerable parenchymal cells against noxious insults generated through inflammation. Here, we review studies of PrP(C) physiology in view of this concept.

19.
Front Cell Dev Biol ; 3: 44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26217662

RESUMO

The physiological role of the cellular prion protein (PrP(C)) is incompletely understood. The expression of PrP(C) in hematopoietic stem cells and immune cells suggests a role in the development of these cells, and in PrP(C) knockout animals altered immune cell proliferation and phagocytic function have been observed. Recently, a spontaneous nonsense mutation at codon 32 in the PRNP gene in goats of the Norwegian Dairy breed was discovered, rendering homozygous animals devoid of PrP(C). Here we report hematological and immunological analyses of homozygous goat kids lacking PrP(C) (PRNP(Ter/Ter) ) compared to heterozygous (PRNP (+/Ter)) and normal (PRNP (+/+)) kids. Levels of cell surface PrP(C) and PRNP mRNA in peripheral blood mononuclear cells (PBMCs) correlated well and were very low in PRNP (Ter/Ter), intermediate in PRNP (+/Ter) and high in PRNP (+/+) kids. The PRNP (Ter/Ter) animals had a shift in blood cell composition with an elevated number of red blood cells (RBCs) and a tendency toward a smaller mean RBC volume (P = 0.08) and an increased number of neutrophils (P = 0.068), all values within the reference ranges. Morphological investigations of blood smears and bone marrow imprints did not reveal irregularities. Studies of relative composition of PBMCs, phagocytic ability of monocytes and T-cell proliferation revealed no significant differences between the genotypes. Our data suggest that PrP(C) has a role in bone marrow physiology and warrant further studies of PrP(C) in erythroid and immune cell progenitors as well as differentiated effector cells also under stressful conditions. Altogether, this genetically unmanipulated PrP(C)-free animal model represents a unique opportunity to unveil the enigmatic physiology and function of PrP(C).

20.
Vet Res ; 46: 28, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25890354

RESUMO

Cryptosporidium parvum, a zoonotic protozoan parasite, causes important losses in neonatal ruminants. Innate immunity plays a key role in controlling the acute phase of this infection. The participation of NCR1+ Natural Killer (NK) cells in the early intestinal innate immune response to the parasite was investigated in neonatal lambs inoculated at birth. The observed increase in the lymphocyte infiltration was further studied by immunohistology and flow cytometry with focus on distribution, density, cellular phenotype related to cytotoxic function and activation status. The frequency of NCR1+ cells did not change with infection, while their absolute number slightly increased in the jejunum and the CD8+/NCR1- T cell density increased markedly. The frequency of perforin+ cells increased significantly with infection in the NCR1+ population (in both NCR1+/CD16+ and NCR1+/CD16- populations) but not in the NCR1-/CD8+ population. The proportion of NCR1+ cells co-expressing CD16+ also increased. The fraction of cells expressing IL2 receptor (CD25), higher in the NCR1+/CD8+ population than among the CD8+/NCR1- cells in jejunal Peyer's patches, remained unchanged during infection. However, contrary to CD8+/NCR1- lymphocytes, the intensity of CD25 expressed by NCR1+ lymphocytes increased in infected lambs. Altogether, the data demonstrating that NK cells are highly activated and possess a high cytotoxic potential very early during infection, concomitant with an up-regulation of the interferon gamma gene in the gut segments, support the hypothesis that they are involved in the innate immune response against C. parvum. The early significant recruitment of CD8+/NCR1- T cells in the small intestine suggests that they could rapidly drive the establishment of the acquired immune response.


Assuntos
Criptosporidiose/imunologia , Cryptosporidium parvum/imunologia , Imunidade Inata , Células Matadoras Naturais/imunologia , Perforina/genética , Doenças dos Ovinos/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Criptosporidiose/parasitologia , Feminino , Intestinos/imunologia , Células Matadoras Naturais/metabolismo , Linfócitos/imunologia , Receptor 1 Desencadeador da Citotoxicidade Natural/genética , Receptor 1 Desencadeador da Citotoxicidade Natural/imunologia , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Perforina/imunologia , Perforina/metabolismo , Nódulos Linfáticos Agregados/imunologia , Ovinos , Doenças dos Ovinos/parasitologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA