Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Chemphyschem ; 20(15): 1997-2009, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31177637

RESUMO

In order to determine a material's hydrogen storage potential, capacity measurements must be robust, reproducible, and accurate. Commonly, research reports focus on the gravimetric capacity, and often times the volumetric capacity is not reported. Determining volumetric capacities is not as straight-forward, especially for amorphous materials. This is the first study to compare measurement reproducibility across laboratories for excess and total volumetric hydrogen sorption capacities based on the packing volume. The use of consistent measurement protocols, common analysis, and figure of merits for reporting data in this study, enable the comparison of the results for two different materials. Importantly, the results show good agreement for excess gravimetric capacities amongst the laboratories. Irreproducibility for excess and total volumetric capacities is attributed to real differences in the measured packing volume of the material.

2.
Adsorption (Boston) ; 24(6): 531-539, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30956405

RESUMO

This paper reports the results of an international interlaboratory study led by the National Institute of Standards and Technology (NIST) on the measurement of high-pressure surface excess carbon dioxide adsorption isotherms on NIST Reference Material RM 8852 (ammonium ZSM-5 zeolite), at 293.15 K (20 °C) from 1 kPa up to 4.5 MPa. Eleven laboratories participated in this exercise and, for the first time, high-pressure adsorption reference data are reported using a reference material. An empirical reference equation n e x = d ( 1 + exp [ - ln ( P ) + a / b ] ) c , [n ex -surface excess uptake (mmol/g), P-equilibrium pressure (MPa), a = -6.22, b = 1.97, c = 4.73, and d = 3.87] along with the 95% uncertainty interval (U k = 2 = 0.075 mmol/g) were determined for the reference isotherm using a Bayesian, Markov Chain Monte Carlo method. Together, this zeolitic reference material and the associated adsorption data provide a means for laboratories to test and validate high-pressure adsorption equipment and measurements. Recommendations are provided for measuring reliable high-pressure adsorption isotherms using this material, including activation procedures, data processing methods to determine surface excess uptake, and the appropriate equation of state to be used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA