Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 165(5): 1219-1232, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37507075

RESUMO

BACKGROUND & AIMS: BiTE (bispecific T-cell engager) immune therapy has demonstrated clinical activity in multiple tumor indications, but its influence in the tumor microenvironment remains unclear. CLDN18.2 is overexpressed in solid tumors including gastric cancer (GC) and pancreatic ductal adenocarcinoma (PDAC), both of which are characterized by the presence of immunosuppressive cells, including regulatory T cells (Tregs) and few effector T cells (Teffs). METHODS: We evaluated the activity of AMG 910, a CLDN18.2-targeted half-life extended (HLE) BiTE molecule, in GC and PDAC preclinical models and cocultured Tregs and Teffs in the presence of CLDN18.2-HLE-BiTE. RESULTS: AMG 910 induced potent, specific cytotoxicity in GC and PDAC cell lines. In GSU and SNU-620 GC xenograft models, AMG 910 engaged human CD3+ T cells with tumor cells, resulting in significant antitumor activity. AMG 910 monotherapy, in combination with a programmed death-1 (PD-1) inhibitor, suppressed tumor growth and enhanced survival in an orthotopic Panc4.14 PDAC model. Moreover, Treg infusion enhanced the antitumor efficacy of AMG 910 in the Panc4.14 model. In syngeneic KPC models of PDAC, treatment with a mouse surrogate CLDN18.2-HLE-BiTE (muCLDN18.2-HLE-BiTE) or the combination with an anti-PD-1 antibody significantly inhibited tumor growth. Tregs isolated from mice bearing KPC tumors that were treated with muCLDN18.2-HLE-BiTE showed decreased T cell suppressive activity and enhanced Teff cytotoxic activity, associated with increased production of type I cytokines and expression of Teff gene signatures. CONCLUSIONS: Our data suggest that BiTE molecule treatment converts Treg function from immunosuppressive to immune enhancing, leading to antitumor activity in immunologically "cold" tumors.


Assuntos
Anticorpos Biespecíficos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Linfócitos T Reguladores/metabolismo , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Moléculas de Adesão Celular , Carcinoma Ductal Pancreático/tratamento farmacológico , Imunidade , Microambiente Tumoral , Claudinas
2.
J Exp Med ; 219(5)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35404390

RESUMO

The resistance of pancreatic ductal adenocarcinoma (PDAC) to immune checkpoint inhibitors (ICIs) is attributed to the immune-quiescent and -suppressive tumor microenvironment (TME). We recently found that CCR2 and CCR5 were induced in PDAC following treatment with anti-PD-1 antibody (αPD-1); thus, we examined PDAC vaccine or radiation therapy (RT) as T cell priming mechanisms together with BMS-687681, a dual antagonist of CCR2 and CCR5 (CCR2/5i), in combination with αPD-1 as new treatment strategies. Using PDAC mouse models, we demonstrated that RT followed by αPD-1 and prolonged treatment with CCR2/5i conferred better antitumor efficacy than other combination treatments tested. The combination of RT + αPD-1 + CCR2/5i enhanced intratumoral effector and memory T cell infiltration but suppressed regulatory T cell, M2-like tumor-associated macrophage, and myeloid-derived suppressive cell infiltration. RNA sequencing showed that CCR2/5i partially inhibited RT-induced TLR2/4 and RAGE signaling, leading to decreased expression of immunosuppressive cytokines including CCL2/CCL5, but increased expression of effector T cell chemokines such as CCL17/CCL22. This study thus supports the clinical development of CCR2/5i in combination with RT and ICIs for PDAC treatment.


Assuntos
Adenocarcinoma , Antagonistas dos Receptores CCR5 , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Receptores CCR2 , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/radioterapia , Animais , Antagonistas dos Receptores CCR5/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/radioterapia , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/radioterapia , Receptores CCR2/antagonistas & inibidores , Receptores CCR5 , Microambiente Tumoral , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA