Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39124507

RESUMO

This study aimed to comprehensively assess the influence of the nanotube diameter and the presence of a silicon carbide (SiC) coating on microbial proliferation on nanostructured titanium surfaces. An experiment used 72 anodized titanium sheets with varying nanotube diameters of 50 and 100 nm. These sheets were divided into four groups: non-coated 50 nm titanium nanotubes, SiC-coated 50 nm titanium nanotubes, non-coated 100 nm titanium nanotubes, and SiC-coated 100 nm titanium nanotubes, totaling 36 samples per group. P. gingivalis and T. denticola reference strains were used to evaluate microbial proliferation. Samples were assessed over 3 and 7 days using fluorescence microscopy with a live/dead viability kit and scanning electron microscopy (SEM). At the 3-day time point, fluorescence and SEM images revealed a lower density of microorganisms in the 50 nm samples than in the 100 nm samples. However, there was a consistently low density of T. denticola across all the groups. Fluorescence images indicated that most bacteria were viable at this time. By the 7th day, there was a decrease in the microorganism density, except for T. denticola in the non-coated samples. Additionally, more dead bacteria were detected at this later time point. These findings suggest that the titanium nanotube diameter and the presence of the SiC coating influenced bacterial proliferation. The results hinted at a potential antibacterial effect on the 50 nm diameter and the coated surfaces. These insights contribute valuable knowledge to dental implantology, paving the way for developing innovative strategies to enhance the antimicrobial properties of dental implant materials and mitigate peri-implant infections.

2.
Biosensors (Basel) ; 14(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38920585

RESUMO

Oral cancer represents a significant global public health challenge, contributing substantially to the incidence and mortality of cancer. Despite established risk factors such as tobacco use and alcohol consumption, early detection remains crucial for effective treatment. This study introduces a novel approach using a transistor-based biosensor system for detecting the P90 (CIP2A) protein. We tested the presence of CIP2A in human leukoplakia samples, which can undergo malignant conversion into aggressive oral squamous cell carcinoma. The method used commercially available glucose test strips functionalized with P90 antibodies, providing high sensitivity and a low limit of detection which was five orders lower than that of commercial ELISA kits. A specially designed printed circuit board (PCB) facilitated accurate measurements, and the device's performance was optimized through characteristic tests. Human sample testing validated the biosensor's effectiveness in distinguishing samples after cell lysis. This study contributes to advancing accurate and cost-effective diagnostic approaches for oral pre-cancer and cancer tissues.


Assuntos
Técnicas Biossensoriais , Leucoplasia Oral , Saliva , Humanos , Leucoplasia Oral/diagnóstico , Saliva/química , Biomarcadores Tumorais/análise , Proteínas de Membrana , Neoplasias Bucais/diagnóstico , Ensaio de Imunoadsorção Enzimática
3.
Artigo em Inglês | MEDLINE | ID: mdl-38362284

RESUMO

The prevalence of breast cancer in women underscores the urgent need for innovative and efficient detection methods. This study addresses this imperative by harnessing salivary biomarkers, offering a noninvasive and accessible means of identifying breast cancer. In this study, commercially available disposable based strips similar to the commonly used glucose detection strips were utilized and functionalized to detect breast cancer with biomarkers of HER2 and CA15-3. The results demonstrated limits of detection for these two biomarkers reached as low as 1 fg/ml much lower than those of conventional enzyme-linked immunosorbent assay in the range of 1∼4 ng/ml. By employing a synchronized double-pulse method to apply 10 of 1.2 ms voltage pulses to the electrode of sensing strip and drain electrode of the transistor for amplifying the detected signal, and the detected signal was the average of 10 digital output readings corresponding to those 10 voltage pulses. The sensor sensitivities were achieved approximately 70/dec and 30/dec for HER2 and CA15-3, respectively. Moreover, the efficiency of this novel technique is underscored by its swift testing time of less than 15 ms and its minimal sample requirement of only 3 µl of saliva. The simplicity of operation and the potential for widespread public use in the future position this approach as a transformative tool in the early detection of breast cancer. This research not only provides a crucial advancement in diagnostic methodologies but also holds the promise of revolutionizing public health practices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA