Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 13(2): R12, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-22356826

RESUMO

BACKGROUND: Orthology is a central tenet of comparative genomics and ortholog identification is instrumental to protein function prediction. Major advances have been made to determine orthology relations among a set of homologous proteins. However, they depend on the comparison of individual sequences and do not take into account divergent orthologs. RESULTS: We have developed an iterative orthology prediction method, Ortho-Profile, that uses reciprocal best hits at the level of sequence profiles to infer orthology. It increases ortholog detection by 20% compared to sequence-to-sequence comparisons. Ortho-Profile predicts 598 human orthologs of mitochondrial proteins from Saccharomyces cerevisiae and Schizosaccharomyces pombe with 94% accuracy. Of these, 181 were not known to localize to mitochondria in mammals. Among the predictions of the Ortho-Profile method are 11 human cytochrome c oxidase (COX) assembly proteins that are implicated in mitochondrial function and disease. Their co-expression patterns, experimentally verified subcellular localization, and co-purification with human COX-associated proteins support these predictions. For the human gene C12orf62, the ortholog of S. cerevisiae COX14, we specifically confirm its role in negative regulation of the translation of cytochrome c oxidase. CONCLUSIONS: Divergent homologs can often only be detected by comparing sequence profiles and profile-based hidden Markov models. The Ortho-Profile method takes advantage of these techniques in the quest for orthologs.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Proteínas de Membrana , Proteínas Mitocondriais/genética , Proteínas de Saccharomyces cerevisiae , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Biologia Computacional , Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Complexo IV da Cadeia de Transporte de Elétrons/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/isolamento & purificação , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Biossíntese de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética
2.
Biochim Biophys Acta ; 1792(12): 1130-7, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19171191

RESUMO

Proper cell functioning requires precise coordination between mitochondrial ATP production and local energy demand. Ionic calcium (Ca(2+)) plays a central role in this coupling because it activates mitochondrial oxidative phosphorylation (OXPHOS) during hormonal and electrical cell stimulation. To determine how mitochondrial dysfunction affects cytosolic and mitochondrial Ca(2+)/ATP handling, we performed life-cell quantification of these parameters in fibroblast cell lines derived from healthy subjects and patients with isolated deficiency of the first OXPHOS complex (CI). In resting patient cells, CI deficiency was associated with a normal mitochondrial ([ATP](m)) and cytosolic ([ATP](c)) ATP concentration, a normal cytosolic Ca(2+) concentration ([Ca(2+)](c)), but a reduced Ca(2+) content of the endoplasmic reticulum (ER). Furthermore, cellular NAD(P)H levels were increased, mitochondrial membrane potential was slightly depolarized, reactive oxygen species (ROS) levels were elevated and mitochondrial shape was altered. Upon stimulation with bradykinin (Bk), the peak increases in [Ca(2+)](c), mitochondrial Ca(2+) concentration ([Ca(2+)](m)), [ATP](c) and [ATP](m) were reduced in patient cells. In agreement with these results, ATP-dependent Ca(2+) removal from the cytosol was slower. Here, we review the interconnection between cytosolic, endoplasmic reticular and mitochondrial Ca(2+) and ATP handling, and summarize our findings in patient fibroblasts in an integrative model.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Complexo I de Transporte de Elétrons/deficiência , Humanos , Doenças Mitocondriais/metabolismo
3.
Methods ; 46(4): 304-11, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18929665

RESUMO

Mitochondria are crucial for many aspects of cellular homeostasis and a sufficiently negative membrane potential (Deltapsi) across the mitochondrial inner membrane (MIM) is required to sustain most mitochondrial functions including ATP generation, MIM fusion, and calcium uptake and release. Here, we present a microscopy approach for automated quantification of Deltapsi and mitochondrial position, shape and calcium handling in individual living cells. In the base protocol, cells are stained with tetramethyl rhodamine methyl ester (TMRM), a fluorescent cation that accumulates in the mitochondrial matrix according to Deltapsi, and visualized using video-microscopy. Next, the acquired images are processed to generate a mitochondria-specific binary image (mask) allowing simultaneous quantification of mitochondrial TMRM fluorescence intensity, shape and position. In a more advanced version of this protocol a mitochondria-targeted variant of green fluorescent protein (mitoAcGFP1) is expressed to allow mask making in TMRM-stained cells. The latter approach allows quantification of Deltapsi in cells with a substantially depolarized Deltapsi. For automated quantification of mitochondrial calcium handling in space and time mitoAcGFP1-expressing cells are stained with rhod-2, a fluorescent calcium indicator that accumulates in the mitochondrial matrix. In this paper, a detailed step-by-step description of the above approaches and its pitfalls is provided.


Assuntos
Cálcio/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Membranas Mitocondriais/ultraestrutura , Células Cultivadas , Humanos , Membranas Mitocondriais/metabolismo , Rodaminas/metabolismo
4.
New Phytol ; 167(3): 711-9, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16101908

RESUMO

The ability to establish cell polarity is crucial to form and function of an individual cell. Polarity underlies critical processes during cell development, such as cell growth, cell division, cell differentiation and cell signalling. Interphase cytoplasmic microtubules in tip-growing fission yeast cells have been shown to play a particularly important role in regulating cell polarity. By placing proteins that serve as spatial cues in the cell cortex of the expanding tip, microtubules determine the site where exocytosis, and therefore growth, takes place. Transport and the targeting of exocytotic vesicles to the very tip depend on the actin cytoskeleton. Recently, endoplasmic microtubules have been identified in tip-growing root hairs, which are an experimental system for plant cell growth. Here, we review the data that demonstrate involvement of microtubules in hair elongation and polarity of the model plants Medicago truncatula and Arabidopsis thaliana. Differences and similarities between the microtubule organization and function in these two species are discussed and we compare the observations in root hairs with the microtubule-based polarity mechanism in fission yeast.


Assuntos
Microtúbulos/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Polaridade Celular/fisiologia , Raízes de Plantas/ultraestrutura , Plantas , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/ultraestrutura
5.
Plant Cell ; 16(4): 933-44, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15031407

RESUMO

The Medicago truncatula Does not Make Infections (DMI2) mutant is mutated in the nodulation receptor-like kinase, NORK. Here, we report that NORK-mutated legumes of three species show an enhanced touch response to experimental handling, which results in a nonsymbiotic root hair phenotype. When care is taken not to induce this response, DMI2 root hairs respond morphologically like the wild type to nodulation factor (NF). Global NF application results in root hair deformation, and NF spot application induces root hair reorientation or branching, depending on the position of application. In the presence of Sinorhizobium meliloti, DMI2 root hairs make two-dimensional 180 degrees curls but do not entrap bacteria in a three-dimensional pocket because curling stops when the root hair tip touches its own shank. Because DMI2 does not express the promoter of M. truncatula Early Nodulin11 (ENOD11) coupled to beta-glucuronidase upon NF application, we propose a split in NF-induced signaling, with one branch to root hair curling and the other to ENOD11 expression.


Assuntos
Medicago/crescimento & desenvolvimento , Medicago/genética , Genes de Plantas , Lipopolissacarídeos/metabolismo , Lotus/genética , Lotus/crescimento & desenvolvimento , Medicago/microbiologia , Medicago sativa/genética , Medicago sativa/crescimento & desenvolvimento , Modelos Biológicos , Mutação , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Transdução de Sinais , Sinorhizobium meliloti/fisiologia , Simbiose
6.
Plant Physiol ; 132(4): 1982-8, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12913154

RESUMO

A critical step in establishing a successful nitrogen-fixing symbiosis between rhizobia and legume plants is the entrapment of the bacteria between root hair cell walls, usually in characteristic 180 degrees to 360 degrees curls, shepherd's crooks, which are formed by the host's root hairs. Purified bacterial signal molecules, the nodulation factors (NFs), which are lipochitooligosaccharides, induce root hair deformation in the appropriate host legume and have been proposed to be a key player in eliciting root hair curling. However, for curling to occur, the presence of intact bacteria is thought to be essential. Here, we show that, when spot applied to one side of the growing Medicago truncatula root hair tip, purified NF alone is sufficient to induce reorientation of the root hair growth direction, or a full curl. Using wild-type M. truncatula containing the pMtENOD11::GUS construct, we demonstrate that MtENOD11::GUS is expressed after spot application. The data have been incorporated into a cell biological model, which explains the formation of shepherd's crook curls around NF-secreting rhizobia by continuous tip growth reorientation.


Assuntos
Lipopolissacarídeos/farmacologia , Medicago/efeitos dos fármacos , Medicago/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Medicago/citologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia
7.
Plant Cell ; 14(11): 2941-55, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12417712

RESUMO

In growing Arabidopsis root hairs, the nucleus locates at a fixed distance from the apex, migrates to a random position during growth arrest, and moves from branch to branch in a mutant with branched hairs. Consistently, an artificial increase of the distance between the nucleus and the apex, achieved by entrapment of the nucleus in a laser beam, stops cell growth. Drug studies show that microtubules are not involved in the positioning of the nucleus but that subapical fine F-actin between the nucleus and the hair apex is required to maintain the nuclear position with respect to the growing apex. Injection of an antibody against plant villin, an actin filament-bundling protein, leads to actin filament unbundling and movement of the nucleus closer to the apex. Thus, the bundled actin at the tip side of the nucleus prevents the nucleus from approaching the apex. In addition, we show that the basipetal movement of the nucleus at root hair growth arrest requires protein synthesis and a functional actin cytoskeleton in the root hair tube.


Assuntos
Actinas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Núcleo Celular/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/química , Arabidopsis/genética , Citoesqueleto/fisiologia , Imuno-Histoquímica , Microscopia Confocal , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA