Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Zebrafish ; 21(2): 191-197, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621205

RESUMO

Tjp1a and other tight junction and adherens proteins play important roles in cell-cell adhesion, scaffolding, and forming seals between cells in epithelial and endothelial tissues. In this study, we labeled Tjp1a of zebrafish with the monomeric red fluorescent protein (mRFP) using CRISPR/Cas9-mediated targeted integration of biotin-labeled polymerase chain reaction (PCR) generated templates. Labeling Tjp1a with RFP allowed us to follow membrane and junctional dynamics of epithelial and endothelial cells throughout zebrafish embryo development. For targeted integration, we used short 35 bp homology arms on each side of the Cas9 genomic target site at the C-terminal of the coding sequence in tjp1a. Through PCR using 5' biotinylated primers containing the homology arms, we generated a double-stranded template for homology directed repair containing a flexible linker followed by RFP. Cas9 protein was complexed with the tjp1a gRNA before mixing with the repair template and microinjected into one-cell zebrafish embryos. We confirmed and recovered a precise integration allele at the desired site at the tjp1a C-terminus. Examination of fluorescence reveals RFP cell-cell junctional labeling using confocal imaging. We are currently using this stable tjp1a-mRFPis86 line to examine the behavior and interactions between cells during vascular formation in zebrafish.


Assuntos
Sistemas CRISPR-Cas , Peixe-Zebra , Animais , Peixe-Zebra/genética , Proteína Vermelha Fluorescente , Biotina/genética , Células Endoteliais , RNA Guia de Sistemas CRISPR-Cas
2.
Zebrafish ; 21(2): 162-170, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621214

RESUMO

We have developed a one-credit semester-long research experience for undergraduate students that involves the use of CRISPR/Cas9 to edit genes in zebrafish. The course is available to students at all stages of their undergraduate training and can be taken up to four times. Students select a gene of interest to edit as the basis of their semester-long project. To select a gene, exploration of developmental processes and human disease is encouraged. As part of the course, students use basic bioinformatic tools, design guide RNAs, inject zebrafish embryos, and analyze both the molecular consequences of gene editing and phenotypic outcomes. Over the 10 years we have offered the course, enrollment has grown from less than 10 students to more than 60 students per semester. Each year, we choose a different gene editing strategy to explore based on recent publications of gene editing methodologies. These have included making CRISPants, targeted integrations, and large gene deletions. In this study, we present how we structure the course and our assessment of the course over the past 3 years.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Animais , Edição de Genes/métodos , Peixe-Zebra/genética , RNA Guia de Sistemas CRISPR-Cas , Estudantes
3.
Elife ; 112022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35713402

RESUMO

The ability to regulate gene activity spatially and temporally is essential to investigate cell-type-specific gene function during development and in postembryonic processes and disease models. The Cre/lox system has been widely used for performing cell and tissue-specific conditional analysis of gene function in zebrafish. However, simple and efficient methods for isolation of stable, Cre/lox regulated zebrafish alleles are lacking. Here, we applied our GeneWeld CRISPR-Cas9 targeted integration strategy to generate floxed alleles that provide robust conditional inactivation and rescue. A universal targeting vector, UFlip, with sites for cloning short homology arms flanking a floxed 2A-mRFP gene trap, was integrated into an intron in rbbp4 and rb1. rbbp4off and rb1off integration alleles resulted in strong mRFP expression,>99% reduction of endogenous gene expression, and recapitulated known indel loss-of-function phenotypes. Introduction of Cre led to stable inversion of the floxed cassette, loss of mRFP expression, and phenotypic rescue. rbbp4on and rb1on integration alleles did not cause phenotypes in combination with a loss-of-function mutation. Addition of Cre led to conditional inactivation by stable inversion of the cassette, gene trapping and mRFP expression, and the expected mutant phenotype. Neural progenitor Cre drivers were used for conditional inactivation and phenotypic rescue to showcase how this approach can be used in specific cell populations. Together these results validate a simplified approach for efficient isolation of Cre/lox-responsive conditional alleles in zebrafish. Our strategy provides a new toolkit for generating genetic mosaics and represents a significant advance in zebrafish genetics.


Assuntos
Sistemas CRISPR-Cas , Peixe-Zebra , Alelos , Animais , Integrases/genética , Integrases/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
4.
Bio Protoc ; 11(14): e4100, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34395736

RESUMO

Efficient precision genome engineering requires high frequency and specificity of integration at the genomic target site. Multiple design strategies for zebrafish gene targeting have previously been reported with widely varying frequencies for germline recovery of integration alleles. The GeneWeld protocol and pGTag (plasmids for Gene Tagging) vector series provide a set of resources to streamline precision gene targeting in zebrafish. Our approach uses short homology of 24-48 bp to drive targeted integration of DNA reporter cassettes by homology-mediated end joining (HMEJ) at a CRISPR/Cas induced DNA double-strand break. The pGTag vectors contain reporters flanked by a universal CRISPR sgRNA sequence to liberate the targeting cassette in vivo and expose homology arms for homology-driven integration. Germline transmission rates for precision-targeted integration alleles range 22-100%. Our system provides a streamlined, straightforward, and cost-effective approach for high-efficiency gene targeting applications in zebrafish. Graphic abstract: GeneWeld method for CRISPR/Cas9 targeted integration.

5.
Sci Rep ; 11(1): 1732, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462297

RESUMO

We previously reported efficient precision targeted integration of reporter DNA in zebrafish and human cells using CRISPR/Cas9 and short regions of homology. Here, we apply this strategy to isolate zebrafish Cre recombinase drivers whose spatial and temporal restricted expression mimics endogenous genes. A 2A-Cre recombinase transgene with 48 bp homology arms was targeted into proneural genes ascl1b, olig2 and neurod1. We observed high rates of germline transmission ranging from 10 to 100% (2/20 olig2; 1/5 neurod1; 3/3 ascl1b). The transgenic lines Tg(ascl1b-2A-Cre)is75, Tg(olig2-2A-Cre)is76, and Tg(neurod1-2A-Cre)is77 expressed functional Cre recombinase in the expected proneural cell populations. Somatic targeting of 2A-CreERT2 into neurod1 resulted in tamoxifen responsive recombination in the nervous system. The results demonstrate Cre recombinase expression is driven by the native promoter and regulatory elements of the targeted genes. This approach provides a straightforward, efficient, and cost-effective method to generate cell type specific zebrafish Cre and CreERT2 drivers, overcoming challenges associated with promoter-BAC and transposon mediated transgenics.


Assuntos
Técnicas de Introdução de Genes/métodos , Integrases/metabolismo , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Recombinação Homóloga , Integrases/genética , Regiões Promotoras Genéticas , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
6.
Elife ; 92020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32779569

RESUMO

One key bottleneck in understanding the human genome is the relative under-characterization of 90% of protein coding regions. We report a collection of 1200 transgenic zebrafish strains made with the gene-break transposon (GBT) protein trap to simultaneously report and reversibly knockdown the tagged genes. Protein trap-associated mRFP expression shows previously undocumented expression of 35% and 90% of cloned genes at 2 and 4 days post-fertilization, respectively. Further, investigated alleles regularly show 99% gene-specific mRNA knockdown. Homozygous GBT animals in ryr1b, fras1, tnnt2a, edar and hmcn1 phenocopied established mutants. 204 cloned lines trapped diverse proteins, including 64 orthologs of human disease-associated genes with 40 as potential new disease models. Severely reduced skeletal muscle Ca2+ transients in GBT ryr1b homozygous animals validated the ability to explore molecular mechanisms of genetic diseases. This GBT system facilitates novel functional genome annotation towards understanding cellular and molecular underpinnings of vertebrate biology and human disease.


The human genome counts over 20,000 genes, which can be turned on and off to create the proteins required for most of life processes. Once produced, proteins need move to specific locations in the cell, where they are able to perform their jobs. Despite striking scientific advances, 90% of human genes are still under-studied; where the proteins they code for go, and what they do remains unknown. Zebrafish share many genes with humans, but they are much easier to manipulate genetically. Here, Ichino et al. used various methods in zebrafish to create a detailed 'catalogue' of previously poorly understood genes, focusing on where the proteins they coded for ended up and the biological processes they were involved with. First, a genetic tool called gene-breaking transposons (GBTs) was used to create over 1,200 strains of genetically altered fish in which a specific protein was both tagged with a luminescent marker and unable to perform its role. Further analysis of 204 of these strains revealed new insight into the role of each protein, with many having unexpected roles and localisations. For example, in one zebrafish strain, the affected gene was similar to a human gene which, when inactivated, causes severe muscle weakness. These fish swam abnormally slowly and also had muscle problems, suggesting that the GBT fish strains could 'model' the human disease. This work sheds new light on the role of many previously poorly understood genes. In the future, similar collections of GBT fish strains could help researchers to study both normal human biology and disease. They could especially be useful in cases where the genes responsible for certain conditions are still difficult to identify.


Assuntos
Técnicas de Silenciamento de Genes , Biblioteca Gênica , Genes Reporter , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , RNA Mensageiro/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
7.
CRISPR J ; 2(6): 417-433, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31742435

RESUMO

CRISPR and CRISPR-Cas effector proteins enable the targeting of DNA double-strand breaks to defined loci based on a variable length RNA guide specific to each effector. The guide RNAs are generally similar in size and form, consisting of a ∼20 nucleotide sequence complementary to the DNA target and an RNA secondary structure recognized by the effector. However, the effector proteins vary in protospacer adjacent motif requirements, nuclease activities, and DNA binding kinetics. Recently, ErCas12a, a new member of the Cas12a family, was identified in Eubacterium rectale. Here, we report the first characterization of ErCas12a activity in zebrafish and expand on previously reported activity in human cells. Using a fluorescent reporter system, we show that CRISPR-ErCas12a elicits strand annealing mediated DNA repair more efficiently than CRISPR-Cas9. Further, using our previously reported gene targeting method that utilizes short homology, GeneWeld, we demonstrate the use of CRISPR-ErCas12a to integrate reporter alleles into the genomes of both zebrafish and human cells. Together, this work provides methods for deploying an additional CRISPR-Cas system, thus increasing the flexibility researchers have in applying genome engineering technologies.


Assuntos
Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/métodos , Animais , Sequência de Bases , Proteínas Associadas a CRISPR/genética , DNA/química , Marcação de Genes/métodos , Engenharia Genética/métodos , Genoma/genética , Humanos , RNA/química , RNA Guia de Cinetoplastídeos/química , Peixe-Zebra/genética
8.
Nucleic Acids Res ; 47(W1): W175-W182, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31127311

RESUMO

The discovery and development of DNA-editing nucleases (Zinc Finger Nucleases, TALENs, CRISPR/Cas systems) has given scientists the ability to precisely engineer or edit genomes as never before. Several different platforms, protocols and vectors for precision genome editing are now available, leading to the development of supporting web-based software. Here we present the Gene Sculpt Suite (GSS), which comprises three tools: (i) GTagHD, which automatically designs and generates oligonucleotides for use with the GeneWeld knock-in protocol; (ii) MEDJED, a machine learning method, which predicts the extent to which a double-stranded DNA break site will utilize the microhomology-mediated repair pathway; and (iii) MENTHU, a tool for identifying genomic locations likely to give rise to a single predominant microhomology-mediated end joining allele (PreMA) repair outcome. All tools in the GSS are freely available for download under the GPL v3.0 license and can be run locally on Windows, Mac and Linux systems capable of running R and/or Docker. The GSS is also freely available online at www.genesculpt.org.


Assuntos
Bases de Dados Genéticas , Edição de Genes , Engenharia Genética/métodos , Software , Animais , Sistemas CRISPR-Cas/genética , Quebras de DNA de Cadeia Dupla , Humanos , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Nucleases de Dedos de Zinco/genética
9.
PLoS One ; 13(5): e0198025, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29795671

RESUMO

Adult stem cells are considered multipotent, restricted to differentiate into a few tissue-specific cell types. With the advent of technologies which can dedifferentiate and transdifferentiate cell types, assumptions about the process of cell fate determination must be reconsidered, including the role of extrinsic versus intrinsic factors. To determine the plasticity of adult neural progenitors, rat hippocampal progenitor cells were xenotransplanted into embryonic zebrafish. These animals allow for easy detection of transplanted cells due to their external development and transparency at early stages. Adult neural progenitors were observed throughout the zebrafish for the duration of the experiment (at least five days post-transplantation). While the majority of transplanted cells were observed in the central nervous system, a large percentage of cells were located in superficial tissues. However, approximately one-third of these cells retained neural morphology and expression of the neuronal marker, Class III ß-tubulin, indicating that the transplanted adult neural progenitors did not adapt alternate fates. A very small subset of cells demonstrated unique, non-neural flattened morphology, suggesting that adult neural progenitors may exhibit plasticity in this model, though at a very low rate. These findings demonstrate that the developing zebrafish may be an efficient model to explore plasticity of a variety of adult stem cell types and the role of external factors on cell fate.


Assuntos
Diferenciação Celular , Plasticidade Celular , Embrião não Mamífero/citologia , Hipocampo/citologia , Células-Tronco Neurais/citologia , Peixe-Zebra/embriologia , Animais , Células Cultivadas , Embrião não Mamífero/fisiologia , Hipocampo/fisiologia , Células-Tronco Neurais/fisiologia , Ratos , Transplante Heterólogo
10.
Sci Rep ; 7(1): 14946, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097697

RESUMO

The zebrafish (Danio rerio) has been widely used as a model vertebrate system to study lipid metabolism, the roles of lipids in diseases, and lipid dynamics in embryonic development. Here, we applied high-spatial resolution matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) to map and visualize the three-dimensional spatial distribution of phospholipid classes, phosphatidylcholine (PC), phosphatidylethanolamines (PE), and phosphatidylinositol (PI), in newly fertilized individual zebrafish embryos. This is the first time MALDI-MSI has been applied for three dimensional chemical imaging of a single cell. PC molecular species are present inside the yolk in addition to the blastodisc, while PE and PI species are mostly absent in the yolk. Two-dimensional MSI was also studied for embryos at different cell stages (1-, 2-, 4-, 8-, and 16-cell stage) to investigate the localization changes of some lipids at various cell developmental stages. Four different normalization approaches were compared to find reliable relative quantification in 2D- and 3D- MALDI MSI data sets.


Assuntos
Embrião não Mamífero/química , Fosfolipídeos/análise , Análise de Célula Única/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero/citologia , Imageamento Tridimensional/métodos
11.
Compr Physiol ; 8(1): 153-235, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29357127

RESUMO

The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.


Assuntos
Neovascularização Patológica/fisiopatologia , Animais , Citocinas/fisiologia , Substâncias de Crescimento/fisiologia , Humanos , Fator 1 Induzível por Hipóxia/fisiologia , Receptores de Citocinas/fisiologia , Receptores de Fatores de Crescimento/fisiologia , Esfingolipídeos/fisiologia
12.
Sci Rep ; 5: 13745, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26345384

RESUMO

Investigating the in vivo role of tumor suppressor genes in cancer is technically challenging due to their essential requirement during early animal development. To address this bottleneck, we generated genetic mosaic adult zebrafish using TALEN genome editing and demonstrate somatic inactivation of the tumor suppressor retinoblastoma1 (rb1) induces tumorigenesis at high frequency. 11-33% of 1-cell stage embryos injected with TALEN mRNAs targeting rb1 exon 2 or 3 develop tumors beginning as early as 3.5 months of age. Lesions predominantly arise in the brain and show features of neuroectodermal-like and glial-like tumors. Mutant allele analysis is consistent with tumor initiation due to somatic inactivation of rb1, revealing a conserved role for rb1 in tumor suppression across vertebrates. In contrast to genetic mosaics, heterozygous rb1-/+ adults show no evidence of neoplasia, while homozygous mutant rb1-/- are larval lethal. This is the first demonstration that somatic inactivation of a tumor suppressor causes cancer in zebrafish, and highlights the utility of site-specific nucleases to create genetic mosaic zebrafish for tumor suppressor gene discovery. Somatic inactivation with site-directed nucleases in zebrafish presents a rapid and scalable strategy to study tumor suppressor gene function in cancer.


Assuntos
Transformação Celular Neoplásica/genética , Endonucleases/metabolismo , Inativação Gênica , Marcação de Genes , Proteína do Retinoblastoma/genética , Alelos , Animais , Sequência de Bases , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Frequência do Gene , Loci Gênicos , Células Germinativas/metabolismo , Humanos , Índice Mitótico , Proteína do Retinoblastoma/química , Alinhamento de Sequência , Peixe-Zebra
13.
PLoS One ; 10(3): e0119370, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25774757

RESUMO

Astyanax mexicanus, a teleost fish that exists in a river-dwelling surface form and multiple cave-dwelling forms, is an excellent system for studying the genetic basis of evolution. Cavefish populations, which independently evolved from surface fish ancestors multiple times, have evolved a number of morphological and behavioral traits. Quantitative trait loci (QTL) analyses have been performed to identify the genetic basis of many of these traits. These studies, combined with recent sequencing of the genome, provide a unique opportunity to identify candidate genes for these cave-specific traits. However, tools to test the requirement of these genes must be established to evaluate the role of candidate genes in generating cave-specific traits. To address this need, we designed transcription activator-like effector nucleases (TALENs) to target two genes that contain coding changes in cavefish relative to surface fish and map to the same location as QTL for pigmentation, oculocutaneous albinism 2 (oca2) and melanocortin 1 receptor (mc1r). We found that surface fish genes can be mutated using this method. TALEN-induced mutations in oca2 result in mosaic loss of melanin pigmentation visible as albino patches in F0 founder fish, suggesting biallelic gene mutations in F0s and allowing us to evaluate the role of this gene in pigmentation. The pigment cells in the albino patches can produce melanin upon treatment with L-DOPA, behaving similarly to pigment cells in albino cavefish and providing additional evidence that oca2 is the gene within the QTL responsible for albinism in cavefish. This technology has the potential to introduce a powerful tool for studying the role of candidate genes responsible for the evolution of cavefish traits.


Assuntos
Albinismo Oculocutâneo/genética , Characidae/genética , Desoxirribonucleases/metabolismo , Proteínas de Peixes/genética , Engenharia Genética/métodos , Receptor Tipo 1 de Melanocortina/genética , Animais , Animais Geneticamente Modificados , Evolução Biológica , Cavernas , Characidae/classificação , Characidae/fisiologia , Genoma , Mutação , Locos de Características Quantitativas
14.
Arterioscler Thromb Vasc Biol ; 35(4): 865-76, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25722433

RESUMO

OBJECTIVE: The E26 transformation-specific domain transcription factor Etv2/Etsrp/ER71 is a master regulator of vascular endothelial differentiation during vasculogenesis, although its later role in sprouting angiogenesis remains unknown. Here, we investigated in the zebrafish model a role for Etv2 and related E26 transformation-specific factors, Fli1a and Fli1b in developmental angiogenesis. APPROACH AND RESULTS: Zebrafish fli1a and fli1b mutants were obtained using transposon-mediated gene trap approach. Individual fli1a and fli1b homozygous mutant embryos display normal vascular patterning, yet the angiogenic recovery observed in older etv2 mutant embryos does not occur in embryos lacking both etv2 and fli1b. Etv2 and fli1b double-deficient embryos fail to form any angiogenic sprouts and show greatly increased apoptosis throughout the axial vasculature. In contrast, fli1a mutation did not affect the recovery of etv2 mutant phenotype. Overexpression analyses indicate that both etv2 and fli1b, but not fli1a, induce the expression of multiple vascular markers and of each other. Temporal inhibition of Etv2 function using photoactivatable morpholinos indicates that the function of Etv2 and Fli1b during angiogenesis is independent from the early requirement of Etv2 during vasculogenesis. RNA-Seq analysis and chromatin immunoprecipitation suggest that Etv2 and Fli1b share the same transcriptional targets and bind to the same E26 transformation-specific sites. CONCLUSIONS: Our data argue that there are 2 phases of early vascular development with distinct requirements of E26 transformation-specific transcription factors. Etv2 alone is required for early vasculogenesis, whereas Etv2 and Fli1b function redundantly during late vasculogenesis and early embryonic angiogenesis.


Assuntos
Proteínas Angiogênicas/metabolismo , Células Endoteliais/metabolismo , Neovascularização Fisiológica , Proteína Proto-Oncogênica c-fli-1/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas Angiogênicas/genética , Animais , Animais Geneticamente Modificados , Apoptose , Sítios de Ligação , Embrião não Mamífero/irrigação sanguínea , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Morfolinos/metabolismo , Mutação , Fenótipo , Regiões Promotoras Genéticas , Proteína Proto-Oncogênica c-fli-1/genética , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/genética , Transcrição Gênica , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
15.
Regeneration (Oxf) ; 2(1): 37-43, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27499866

RESUMO

Loss-of-function genetics provides strong evidence for a gene's function in a wild-type context. In many model systems, this approach has been invaluable for discovering the function of genes in diverse biological processes. Axolotls are urodele amphibians (salamanders) with astonishing regenerative abilities, capable of regenerating entire limbs, portions of the tail (including spinal cord), heart, and brain into adulthood. With their relatively short generation time among salamanders, they offer an outstanding opportunity to interrogate natural mechanisms for appendage and organ regeneration provided that the tools are developed to address these long-standing questions. Here we demonstrate targeted modification of the thrombospondin-1 (tsp-1) locus using transcription-activator-like effector nucleases (TALENs) and identify a role of tsp-1 in recruitment of myeloid cells during limb regeneration. We find that while tsp-1-edited mosaic animals still regenerate limbs, they exhibit a reduced subepidermal collagen layer in limbs and an increased number of myeloid cells within blastemas. This work presents a protocol for generating and genotyping mosaic axolotls with TALEN-mediated gene edits.

16.
PLoS One ; 9(12): e114888, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25485542

RESUMO

In this study we describe the molecular and cellular characterization of a zebrafish mutant that develops tumors in the optic pathway. Heterozygous Tg(flk1:RFP)is18 transgenic adults develop tumors of the retina, optic nerve and optic tract. Molecular and genetic mapping demonstrate the tumor phenotype is linked to a high copy number transgene array integrated in the lincRNA gene lincRNAis18/Zv9_00007276 on chromosome 3. TALENs were used to isolate a 147 kb deletion allele that removes exons 2-5 of the lincRNAis18 gene. Deletion allele homozygotes are viable and do not develop tumors, indicating loss of function of the lincRNAis18 locus is not the trigger for tumor onset. Optic pathway tumors in the Tg(flk1:RFP)is18 mutant occur with a penetrance of 80-100% by 1 year of age. The retinal tumors are highly vascularized and composed of rosettes of various sizes embedded in a fibrous matrix. Immunohistochemical analysis showed increased expression of the glial markers GFAP and BLBP throughout retinal tumors and in dysplastic optic nerve. We performed transcriptome analysis of pre-tumorous retina and retinal tumor tissue and found changes in gene expression signatures of radial glia and astrocytes (slc1a3), activated glia (atf3, blbp, apoeb), proliferating neural progenitors (foxd3, nestin, cdh2, her9/hes1), and glioma markers (S100ß, vim). The transcriptome also revealed activation of cAMP, Stat3 and Wnt signal transduction pathways. qRT-PCR confirmed >10-fold overexpression of the Wnt pathway components hbegfa, ascl1a, and insm1a. Together the data indicate Müller glia and/or astrocyte-derived progenitors could contribute to the zebrafish Tg(flk1:RFP)is18 optic pathway tumors.


Assuntos
Animais Geneticamente Modificados/crescimento & desenvolvimento , Transformação Celular Neoplásica/patologia , Neuroglia/citologia , Nervo Óptico/citologia , Células-Tronco/citologia , Vias Visuais/citologia , Peixe-Zebra/crescimento & desenvolvimento , Animais , Southern Blotting , Diferenciação Celular , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Técnicas Imunoenzimáticas , Neuroglia/metabolismo , Nervo Óptico/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/metabolismo , Vias Visuais/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
17.
Nature ; 491(7422): 114-8, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23000899

RESUMO

The zebrafish (Danio rerio) is increasingly being used to study basic vertebrate biology and human disease with a rich array of in vivo genetic and molecular tools. However, the inability to readily modify the genome in a targeted fashion has been a bottleneck in the field. Here we show that improvements in artificial transcription activator-like effector nucleases (TALENs) provide a powerful new approach for targeted zebrafish genome editing and functional genomic applications. Using the GoldyTALEN modified scaffold and zebrafish delivery system, we show that this enhanced TALEN toolkit has a high efficiency in inducing locus-specific DNA breaks in somatic and germline tissues. At some loci, this efficacy approaches 100%, including biallelic conversion in somatic tissues that mimics phenotypes seen using morpholino-based targeted gene knockdowns. With this updated TALEN system, we successfully used single-stranded DNA oligonucleotides to precisely modify sequences at predefined locations in the zebrafish genome through homology-directed repair, including the introduction of a custom-designed EcoRV site and a modified loxP (mloxP) sequence into somatic tissue in vivo. We further show successful germline transmission of both EcoRV and mloxP engineered chromosomes. This combined approach offers the potential to model genetic variation as well as to generate targeted conditional alleles.


Assuntos
Desoxirribonucleases/metabolismo , Marcação de Genes/métodos , Engenharia Genética/métodos , Genoma/genética , Peixe-Zebra/genética , Alelos , Animais , Sítios de Ligação Microbiológicos/genética , Sequência de Bases , Cromossomos/genética , Quebras de DNA , DNA de Cadeia Simples/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Genômica/métodos , Genótipo , Mutação em Linhagem Germinativa/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Hormônio Liberador da Corticotropina/genética , Reparo de DNA por Recombinação/genética
18.
Dev Dyn ; 241(2): 415-25, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22275008

RESUMO

BACKGROUND: The single spanning transmembrane amyloid precursor protein (APP) and its proteolytic product, amyloid-beta (Ab) peptide, have been intensely studied due to their role in the pathogenesis of Alzheimer's disease. However, the biological role of the secreted ectodomain of APP, which is also generated by proteolytic cleavage, is less well understood. Here, we report Tol2 red fluorescent protein (RFP) transposon gene trap integrations in the zebrafish amyloid precursor protein a (appa) and amyloid precursor-like protein 2 (aplp2) genes. The transposon integrations are predicted to disrupt the appa and aplp2 genes to primarily produce secreted ectodomains of the corresponding proteins that are fused to RFP. RESULTS: Our results indicate the Appa-RFP and Aplp2 fusion proteins are likely secreted from the central nervous system and accumulate in the embryonic veins independent of blood flow. CONCLUSIONS: The zebrafish appa and aplp2 transposon insertion alleles will be useful for investigating the biological role of the secreted form of APP.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Alelos , Precursor de Proteína beta-Amiloide/genética , Proteínas Amiloidogênicas/genética , Animais , Elementos de DNA Transponíveis/genética , Corantes Fluorescentes/metabolismo , Técnicas Genéticas , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutagênese Insercional , Veias/embriologia , Veias/metabolismo , Proteínas de Peixe-Zebra/genética , Proteína Vermelha Fluorescente
19.
PLoS One ; 6(4): e18826, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21533036

RESUMO

Large-scale sequencing of human cancer genomes and mouse transposon-induced tumors has identified a vast number of genes mutated in different cancers. One of the outstanding challenges in this field is to determine which genes, when mutated, contribute to cellular transformation and tumor progression. To identify new and conserved genes that drive tumorigenesis we have developed a novel cancer model in a distantly related vertebrate species, the zebrafish, Danio rerio. The Sleeping Beauty (SB) T2/Onc transposon system was adapted for somatic mutagenesis in zebrafish. The carp ß-actin promoter was cloned into T2/Onc to create T2/OncZ. Two transgenic zebrafish lines that contain large concatemers of T2/OncZ were isolated by injection of linear DNA into the zebrafish embryo. The T2/OncZ transposons were mobilized throughout the zebrafish genome from the transgene array by injecting SB11 transposase RNA at the 1-cell stage. Alternatively, the T2/OncZ zebrafish were crossed to a transgenic line that constitutively expresses SB11 transposase. T2/OncZ transposon integration sites were cloned by ligation-mediated PCR and sequenced on a Genome Analyzer II. Between 700-6800 unique integration events in individual fish were mapped to the zebrafish genome. The data show that introduction of transposase by transgene expression or RNA injection results in an even distribution of transposon re-integration events across the zebrafish genome. SB11 mRNA injection resulted in neoplasms in 10% of adult fish at ∼10 months of age. T2/OncZ-induced zebrafish tumors contain many mutated genes in common with human and mouse cancer genes. These analyses validate our mutagenesis approach and provide additional support for the involvement of these genes in human cancers. The zebrafish T2/OncZ cancer model will be useful for identifying novel and conserved genetic drivers of human cancers.


Assuntos
Elementos de DNA Transponíveis , Mutagênese , Animais , Animais Geneticamente Modificados , Sequência de Bases , DNA/genética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Peixe-Zebra
20.
Nucleic Acids Res ; 39(10): 4166-79, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21266475

RESUMO

The bacterial recombinase RecA forms a nucleic acid-protein filament on single-stranded (ss) DNA during the repair of double-strand breaks (DSBs) that efficiently undergoes a homology search and engages in pairing with the complementary DNA sequence. We utilized the pairing activity of RecA-DNA filaments to tether biochemical activities to specific chromosomal sites. Different filaments with chimeric RecA proteins were tested for the ability to induce loss of heterozygosity at the golden locus in zebrafish after injection at the one-cell stage. A fusion protein between RecA containing a nuclear localization signal (NLS) and the DNA-binding domain of Gal4 (NLS-RecA-Gal4) displayed the most activity. Our results demonstrate that complementary ssDNA filaments as short as 60 nucleotides coated with NLS-RecA-Gal4 protein are able to cause loss of heterozygosity in ∼3% of the injected embryos. We demonstrate that lesions in ∼9% of the F0 zebrafish are transmitted to subsequent generations as large chromosomal deletions. Co-injection of linear DNA with the NLS-RecA-Gal4 DNA filaments promotes the insertion of the DNA into targeted genomic locations. Our data support a model whereby NLS-RecA-Gal4 DNA filaments bind to complementary target sites on chromatin and stall DNA replication forks, resulting in a DNA DSB.


Assuntos
Perda de Heterozigosidade , Recombinases Rec A/metabolismo , Peixe-Zebra/genética , Animais , DNA de Cadeia Simples/administração & dosagem , Proteínas de Ligação a DNA/genética , Embrião não Mamífero/anatomia & histologia , Cor de Olho , Marcação de Genes , Genes Reporter , Genoma , Injeções , Mutação , Sinais de Localização Nuclear , Recombinases Rec A/genética , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/química , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA