Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 178: 113861, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309892

RESUMO

A growing number of studies over the years has successfully employed computer simulation tools to understand, optimize and design spirit distillations. Amongst distilled spirits, cognac is a reputed wine spirit resulting from a double batch distillation process known as Charentaise distillation. This complex operation comprises the wine distillation (WD) and the brouillis distillation (BD), which are carried out in copper alembics. The distillate produced in each batch is fractionated and some of those fractions are recycled in subsequent batches. To improve the current understanding of the behavior of aroma compounds during the process, computer simulation modules were built in this work for a WD and a BD and the results were compared with experimental data. Of the 62 aroma compounds detected in the samples over time, 52 could be represented in the simulations, including 37 using the NRTL thermodynamic model to calculate vapor-liquid equilibria and another 15 with the UNIFAC model. Half of those had their concentration profiles and their partitioning accurately described by the simulation, most of which were modeled with NRTL. This highlights the need for reliable vapor-liquid equilibrium data for aroma compounds that were poorly represented or absent from the simulation as well as kinetic data for chemical reactions occurring during distillation. Furthermore, the impact of the recycling operation on the composition in aroma compounds of freshly distilled cognac was investigated. To represent a steady state, a mathematical model was employed to implement the recycling of distillate fractions during 8 successive Charentaise distillation cycles. The operation was shown to improve the extraction of ethanol and of all volatile compounds in the heart, reaching a pseudo steady state after 3 to 5 cycles. The recycling of the second fraction had a higher influence on the extraction of alcohols and terpenes, while for most esters and norisoprenoids the recycled head fractions played a bigger role.


Assuntos
Odorantes , Vinho , Odorantes/análise , Simulação por Computador , Bebidas Alcoólicas/análise , Vinho/análise , Etanol/análise
2.
Food Res Int ; 178: 113977, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309919

RESUMO

The Charentaise distillation plays an essential role in designing cognac aroma by extracting and selectively concentrating aroma compounds from the wine along with ethanol, in addition to promoting compound formation or degradation through different chemical reactions. This traditional mode of distillation still relies heavily on empirical knowledge and the impact of its different parameters on the composition of cognac is not fully elucidated. In this context, this study aimed to broaden the current knowledge on the behavior of aroma compounds throughout the two steps of the Charentaise distillation and to investigate the formation of aroma compounds during the operation, an aspect which is seldom considered. The concentration profiles of 62 aroma compounds were represented over time for a wine and a brouillis distillation in usual scale (25 hL) with recycling. A classification system was then proposed to group compounds based on their volatilities at different ethanol concentrations in the boiling liquid, their concentration profiles and their chemical properties. This could help identify how chemical characteristics of aroma compounds affect their volatilities in hydroalcoholic media during distillation. In addition, several compounds appear to be formed during distillation, most of which are terpenes, norisoprenoids and aldehydes. Finally, to highlight the importance of different compounds to the aroma of freshly distilled cognac, their odor activity values (OAV) in the heart fraction were estimated, revealing isobutanol and (E)-ß-damascenone to be the most odorant compounds. These results provided additional elements of understanding for different aspects of the Charentaise distillation for the production of cognac, several of which can be transposed, at least in part, to different modes of distillation pertaining to other distilled beverages.


Assuntos
Odorantes , Vinho , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Bebidas Alcoólicas/análise , Vinho/análise , Etanol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA