Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2022: 9008685, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782058

RESUMO

Despite significant improvements in treatment and survival in paediatric cancers, outcomes for children with brain tumours remain poor. Novel therapeutic approaches are needed to improve survival and quality of survival. Extracellular arginine dependency (auxotrophy) has been recognised in several tumours as a potential therapeutic target. This dependency is due to the inability of cancer cells to recycle or synthesise intracellular arginine through the urea cycle pathway compared to normal cells. Whilst adult glioblastoma exhibits this dependency, the expression of the arginine pathway enzymes has not been delineated in paediatric brain tumours. We used immunohistochemical (IHC) methods to stain for arginine pathway enzymes in paediatric high-grade glioma (pHGG), low-grade glioma (pLGG), ependymoma (EPN), and medulloblastoma (MB) tumour tissue microarrays (TMAs). The antibodies detected protein expression of the metaboliser arginase (Arg1 and Arg2); recycling enzymes ornithine transcarbamoylase (OTC), argininosuccinate synthetase (ASS1), and argininosuccinate lyase (ASL); and the transporter SLC7A1. Deficiency of OTC, ASS1, and ASL was seen in 87.5%, 94%, and 79% of pHGG samples, respectively, consistent with an auxotrophic signature. Similar result was obtained in pLGG with 96%, 93%, and 91% of tumours being deficient in ASL, ASS1, and OTC, respectively. 79%, 88%, and 85% of MB cases were ASL, ASS1, and OTC deficient whilst ASL and OTC were deficient in 57% and 91% of EPN samples. All tumour types highly expressed SLC7A1 and Arginase, with Arg2 being the main isoform, demonstrating that they could transport and utilise arginine. Our results show that pHGG, pLGG, EPN, and MB demonstrate arginine auxotrophy based on protein expression and are likely to be susceptible to arginine depletion. Pegylated arginase (BCT-100) is currently in phase I/II trials in relapsed pHGG. Our results suggest that therapeutic arginine depletion may also be useful in other tumour types and IHC analysis of patient tumour samples could help identify patients likely to benefit from this treatment.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Glioma , Meduloblastoma , Adulto , Arginase/genética , Arginina , Argininossuccinato Liase , Neoplasias Encefálicas/genética , Criança , Ependimoma , Glioma/genética , Humanos , Ornitina Carbamoiltransferase
2.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35216098

RESUMO

The lack of treatment options for high-grade brain tumors has led to searches for alternative therapeutic modalities. Electrical field therapy is one such area. The Optune™ system is an FDA-approved novel device that delivers continuous alternating electric fields (tumor treating fields-TTFields) to the patient for the treatment of primary and recurrent Glioblastoma multiforme (GBM). Various mechanisms have been proposed to explain the effects of TTFields and other electrical therapies. Here, we present the first study of genome-wide expression of electrotherapy (delivered via TTFields or Deep Brain Stimulation (DBS)) on brain tumor cell lines. The effects of electric fields were assessed through gene expression arrays and combinational effects with chemotherapies. We observed that both DBS and TTFields significantly affected brain tumor cell line viability, with DBS promoting G0-phase accumulation and TTFields promoting G2-phase accumulation. Both treatments may be used to augment the efficacy of chemotherapy in vitro. Genome-wide expression assessment demonstrated significant overlap between the different electrical treatments, suggesting novel interactions with mitochondrial functioning and promoting endoplasmic reticulum stress. We demonstrate the in vitro efficacy of electric fields against adult and pediatric high-grade brain tumors and elucidate potential mechanisms of action for future study.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Encéfalo/patologia , Proliferação de Células/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Criança , Terapia Combinada/métodos , Terapia por Estimulação Elétrica/métodos , Estresse do Retículo Endoplasmático/genética , Fase G2/genética , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Mitocôndrias/genética , Fase de Repouso do Ciclo Celular/genética
3.
Sci Rep ; 11(1): 15908, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354095

RESUMO

While specific microRNA (miRNA) signatures have been identified in glioblastoma (GBM), the intratumour heterogeneity in miRNA expression has not yet been characterised. In this study, we reveal significant alterations in miRNA expression across three GBM tumour regions: the core, rim, and invasive margin. Our miRNA profiling analysis showed that miR-330-5p and miR-215-5p were upregulated in the invasive margin relative to the core and the rim regions, while miR-619-5p, miR-4440 and miR-4793-3p were downregulated. Functional analysis of newly identified miRNAs suggests their involvement in regulating lipid metabolic pathways. Subsequent liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectroscopy (LC-MS/MS) profiling of the intracellular metabolome and the lipidome of GBM cells with dysregulated miRNA expression confirmed the alteration in the metabolite levels associated with lipid metabolism. The identification of regional miRNA expression signatures may underlie the metabolic heterogeneity within the GBM tumour and understanding this relationship may open new avenues for the GBM treatment.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/metabolismo , MicroRNAs/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Biologia Computacional/métodos , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Heterogeneidade Genética , Glioblastoma/genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Espectrometria de Massas em Tandem/métodos , Transcriptoma/genética , Microambiente Tumoral/genética
4.
Neurooncol Adv ; 2(1): vdaa087, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32904996

RESUMO

BACKGROUND: Glioblastoma (GBM) is a highly aggressive brain tumor with rapid subclonal diversification, harboring molecular abnormalities that vary temporospatially, a contributor to therapy resistance. Fluorescence-guided neurosurgical resection utilizes the administration of 5-aminolevulinic acid (5-ALA) generating individually fluorescent tumor cells within a background population of non-neoplastic cells in the invasive tumor region. The aim of the study was to specifically isolate and interrogate the invasive GBM cell population using a novel 5-ALA-based method. METHODS: We have isolated the critical invasive GBM cell population by developing 5-ALA-based metabolic fluorescence-activated cell sorting. This allows purification and study of invasive cells from GBM without an overwhelming background "normal brain" signal to confound data. The population was studied using RNAseq, real-time PCR, and immunohistochemistry, with gene targets functionally interrogated on proliferation and migration assays using siRNA knockdown and known drug inhibitors. RESULTS: RNAseq analysis identifies specific genes such as SERPINE1 which is highly expressed in invasive GBM cells but at low levels in the surrounding normal brain parenchyma. siRNA knockdown and pharmacological inhibition with specific inhibitors of SERPINE1 reduced the capacity of GBM cells to invade in an in vitro assay. Rodent xenografts of 5-ALA-positive cells were established and serially transplanted, confirming tumorigenicity of the fluorescent patient-derived cells but not the 5-ALA-negative cells. CONCLUSIONS: Identification of unique molecular features in the invasive GBM population offers hope for developing more efficacious targeted therapies compared to targeting the tumor core and for isolating tumor subpopulations based upon intrinsic metabolic properties.

5.
Clin Cancer Res ; 25(16): 5094-5106, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31113843

RESUMO

PURPOSE: High-grade glioma (HGG) treatment is limited by the inability of otherwise potentially efficacious drugs to penetrate the blood-brain barrier. We evaluate the unique intracavity delivery mode and translational potential of a blend of poly(DL-lactic acid-co-glycolic acid; PLGA) and poly(ethylene glycol; PEG) paste combining temozolomide and etoposide to treat surgically resected HGG. EXPERIMENTAL DESIGN: To prolong stability of temozolomide prodrug, combined in vitro drug release was quantitatively assessed from low pH-based PLGA/PEG using advanced analytic methods. In vitro cytotoxicity was measured against a panel of HGG cell lines and patient-derived cultures using metabolic assays. In vivo safety and efficacy was evaluated using orthotopic 9L gliosarcoma allografts, previously utilized preclinically to develop Gliadel. RESULTS: Combined etoposide and temozolomide in vitro release (22 and 7 days, respectively) was achieved from a lactic acid-based PLGA/PEG paste, used to enhance stability of temozolomide prodrug. HGG cells from central-enhanced regions were more sensitive to each compound relative to primary lines derived from the HGG-invasive margin. Both drugs retained cytotoxic capability upon release from PLGA/PEG. In vivo studies revealed a significant overall survival benefit in postsurgery 9L orthotopic gliosarcomas, treated with intracavity delivered PLGA/PEG/temozolomide/etoposide and enhanced with adjuvant radiotherapy. Long-term survivorship was observed in over half the animals with histologic confirmation of disease-free brain. CONCLUSIONS: The significant survival benefit of intracavity chemotherapy demonstrates clinical applicability of PLGA/PEG paste-mediated delivery of temozolomide and etoposide adjuvant to radiotherapy. PLGA/PEG paste offers a future platform for combination delivery of molecular targeted compounds.


Assuntos
Portadores de Fármacos , Etoposídeo/administração & dosagem , Glioma/mortalidade , Glioma/terapia , Temozolomida/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Etoposídeo/farmacocinética , Glioma/diagnóstico , Glioma/patologia , Humanos , Nanopartículas , Poliésteres , Polietilenoglicóis , Temozolomida/farmacocinética , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Int J Mol Sci ; 18(11)2017 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-29156557

RESUMO

Glioblastoma, a WHO grade IV astrocytoma, is a highly aggressive and heterogeneous tumour that infiltrates deeply into surrounding brain parenchyma, making complete surgical resection impossible. Despite chemo-radiotherapy, the residual cell population within brain parenchyma post-surgery causes inevitable recurrence. Previously, the tumour core has been the focus of research and the basis for targeted therapeutic regimes, which have failed to improve survival in clinical trials. Here, we focus on the invasive margin as defined by the region with 5-aminolevulinic acid (5ALA) (GliolanTM) fluorescence at surgery beyond the T1 enhancing region on magnetic resonance imaging (MRI). This area is hypothesized to constitute unique microenvironmental pressures, and consequently be molecularly distinct to tumour core and enhancing rim regions. We conducted hematoxylin and eosin (H&E), array real time polymerase chain reaction (PCR), and immunohistochemistry staining on various intra-tumour regions of glioblastoma to determine molecular heterogeneity between regions. We analyzed 73 tumour samples from 21 patients and compared cellular density, cell proliferation, and the degree of vascularity. There is a statistically significant difference between the core, invasive margin and other regions for cell density (p < 0.001), cell proliferation (p = 0.029), and vascularity (p = 0.007). Aldehyde dehydrogenase 1 (ALDH1) and Nestin immunohistochemistry were used as a measure of stem-like properties, showing significantly decreased Nestin expression (p < 0.0001) in the invasive margin. Array PCR of the core, rim, and invasive regions showed significantly increased fibroblast growth factor (FGF) and ALDH1 expression in the invasive zone, with elevated hypoxia inducing factor 1-alpha (HIF1α) in the rim region, adjacent to the hypoxic core. The influence of varying microenvironments in the intra-tumour regions is a major key to understanding intra-tumour heterogeneity. This study confirms the distinct molecular composition of the heterogeneous invasive margin and cautions against purported therapy strategies that target candidate glioblastoma stem-like genes that are predominantly expressed in the tumour core. Full characterization of tumour cells in the invasive margin is critical, as these cells may more closely resemble the residual cell population responsible for tumour recurrence. Their unique nature should be considered when developing targeted agents for residual glioblastoma multiforme (GBM).


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/cirurgia , Glioblastoma/cirurgia , Ácidos Levulínicos/administração & dosagem , Células-Tronco Neoplásicas/metabolismo , Adulto , Idoso , Família Aldeído Desidrogenase 1 , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Regulação para Baixo , Feminino , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Nestina/genética , Nestina/metabolismo , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo , Análise de Sobrevida , Ácido Aminolevulínico
7.
J Clin Endocrinol Metab ; 99(7): E1199-208, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24708099

RESUMO

CONTEXT: The sodium iodide symporter (NIS) mediates active transport of iodide into the thyroid and the lactating mammary glands and is highly expressed in thyroid and breast carcinomas. NIS is clinically very relevant because it allows the treatment with radioiodine of thyroid cancer patients. OBJECTIVE: In this study we wanted to explore whether NIS is expressed in the ovary and in ovarian cancer. METHODS/PATIENTS: Methods included NIS and paired box 8 expression and function in ovarian cancer patients and rats by immunochemistry, immunoblot, RT-PCR, and iodide uptake. RESULTS: Here we demonstrate for the first time that NIS is expressed in the ovary and fallopian tube and actively accumulates significant levels of radioiodide in vivo. In a large survey of menstruating women receiving radioiodide for medical purposes, 15% showed significant uptake in the normal reproductive tract. Ovarian NIS activity is influenced by the estrous cycle stage in rats, being up-regulated during peak levels of estrogens occurring immediately before the ovulation. We unveil that the regulatory mechanism underlying this phenomenon is based on the functional cooperation of estrogen receptor-α and paired box 8. We also show that NIS is highly expressed in ovarian cancer, predicting a poor prognosis in these patients. CONCLUSIONS: These results provide the basis that will help minimize the impact of therapeutic doses of radioiodide on gonadal function. We also suggest that NIS is a new ovarian cancer marker, opening a door for the use of radioiodide in the diagnosis and treatment of ovarian cancer patients.


Assuntos
Genitália Feminina/metabolismo , Iodo/metabolismo , Neoplasias Epiteliais e Glandulares/diagnóstico , Neoplasias Ovarianas/diagnóstico , Simportadores/fisiologia , Adulto , Animais , Carcinoma Epitelial do Ovário , Feminino , Genitália Feminina/patologia , Células HeLa , Humanos , Pessoa de Meia-Idade , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Prognóstico , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA