Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Nat Commun ; 15(1): 4772, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858384

RESUMO

The underlying mechanisms of atherosclerosis, the second leading cause of death among Werner syndrome (WS) patients, are not fully understood. Here, we establish an in vitro co-culture system using macrophages (iMφs), vascular endothelial cells (iVECs), and vascular smooth muscle cells (iVSMCs) derived from induced pluripotent stem cells. In co-culture, WS-iMφs induces endothelial dysfunction in WS-iVECs and characteristics of the synthetic phenotype in WS-iVSMCs. Transcriptomics and open chromatin analysis reveal accelerated activation of type I interferon signaling and reduced chromatin accessibility of several transcriptional binding sites required for cellular homeostasis in WS-iMφs. Furthermore, the H3K9me3 levels show an inverse correlation with retrotransposable elements, and retrotransposable element-derived double-stranded RNA activates the DExH-box helicase 58 (DHX58)-dependent cytoplasmic RNA sensing pathway in WS-iMφs. Conversely, silencing type I interferon signaling in WS-iMφs rescues cell proliferation and suppresses cellular senescence and inflammation. These findings suggest that Mφ-specific inhibition of type I interferon signaling could be targeted to treat atherosclerosis in WS patients.


Assuntos
Aterosclerose , Inflamação , Interferon Tipo I , Macrófagos , Retroelementos , Síndrome de Werner , Interferon Tipo I/metabolismo , Síndrome de Werner/genética , Síndrome de Werner/metabolismo , Humanos , Aterosclerose/metabolismo , Aterosclerose/imunologia , Aterosclerose/genética , Aterosclerose/patologia , Macrófagos/metabolismo , Macrófagos/imunologia , Retroelementos/genética , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Transdução de Sinais , Técnicas de Cocultura , Miócitos de Músculo Liso/metabolismo , Células Endoteliais/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Senescência Celular , Proliferação de Células
2.
Adv Sci (Weinh) ; 11(18): e2308276, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514919

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) continuously generate platelets throughout one's life. Inherited Platelet Disorders affect ≈ 3 million individuals worldwide and are characterized by defects in platelet formation or function. A critical challenge in the identification of these diseases lies in the absence of models that facilitate the study of hematopoiesis ex vivo. Here, a silk fibroin-based bioink is developed and designed for 3D bioprinting. This bioink replicates a soft and biomimetic environment, enabling the controlled differentiation of HSPCs into platelets. The formulation consisting of silk fibroin, gelatin, and alginate is fine-tuned to obtain a viscoelastic, shear-thinning, thixotropic bioink with the remarkable ability to rapidly recover after bioprinting and provide structural integrity and mechanical stability over long-term culture. Optical transparency allowed for high-resolution imaging of platelet generation, while the incorporation of enzymatic sensors allowed quantitative analysis of glycolytic metabolism during differentiation that is represented through measurable color changes. Bioprinting patient samples revealed a decrease in metabolic activity and platelet production in Inherited Platelet Disorders. These discoveries are instrumental in establishing reference ranges for classification and automating the assessment of treatment responses. This model has far-reaching implications for application in the research of blood-related diseases, prioritizing drug development strategies, and tailoring personalized therapies.


Assuntos
Bioimpressão , Plaquetas , Diferenciação Celular , Fibroínas , Hematopoese , Impressão Tridimensional , Fibroínas/metabolismo , Fibroínas/química , Bioimpressão/métodos , Humanos , Plaquetas/metabolismo , Hematopoese/fisiologia , Tinta , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Gelatina/química
3.
Nat Commun ; 15(1): 2588, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519457

RESUMO

We recently achieved the first-in-human transfusion of induced pluripotent stem cell-derived platelets (iPSC-PLTs) as an alternative to standard transfusions, which are dependent on donors and therefore variable in supply. However, heterogeneity characterized by thrombopoiesis-biased or immune-biased megakaryocytes (MKs) continues to pose a bottleneck against the standardization of iPSC-PLT manufacturing. To address this problem, here we employ microRNA (miRNA) switch biotechnology to distinguish subpopulations of imMKCLs, the MK cell lines producing iPSC-PLTs. Upon miRNA switch-based screening, we find imMKCLs with lower let-7 activity exhibit an immune-skewed transcriptional signature. Notably, the low activity of let-7a-5p results in the upregulation of RAS like proto-oncogene B (RALB) expression, which is crucial for the lineage determination of immune-biased imMKCL subpopulations and leads to the activation of interferon-dependent signaling. The dysregulation of immune properties/subpopulations, along with the secretion of inflammatory cytokines, contributes to a decline in the quality of the whole imMKCL population.


Assuntos
Células-Tronco Pluripotentes Induzidas , MicroRNAs , Humanos , Megacariócitos , Células-Tronco Pluripotentes Induzidas/metabolismo , Plaquetas/metabolismo , Trombopoese/genética , MicroRNAs/genética , MicroRNAs/metabolismo
4.
Regen Ther ; 25: 213-219, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38260088

RESUMO

The ex vivo production of platelets from induced pluripotent cells (iPSCs) may offer a safer and sustainable alternative for transfusions and drug delivery systems (DDS). However, the mass production of the clinically required number of iPSC-derived platelets (iPSC-PLTs) is challenging. Here, we introduce recent technologies for mass production and the first-in-human clinical trial using ex vivo iPSC-PLTs. To this end, we established immortalized megakaryocyte progenitor cell lines (imMKCLs) as an expandable master cell bank (MCB) through the overexpression of c-MYC, BMI1 and BCL-XL, which modulated megakaryopoiesis and thrombopoiesis. We also optimized a culture cocktail for maturation of the imMKCLs by mixing an aryl hydrocarbon receptor (AhR) antagonist, SR1/GNF-316; a Rho-associated protein kinase (ROCK) inhibitor, Y-27632/Y-39983; and a small-molecule compound replacing recombinant thrombopoietin (TPO), TA-316. Finally, we discovered the importance of turbulence on the manufacturing of intact iPSC-PLTs, allowing us to develop a turbulence-based bioreactor, VerMES. Combination of the MCB and VerMES enabled us to produce more than 100 billion iPSC-PLTs, leading to the first-in-human clinical trial. Despite these advancements, many challenges remain before expanding the clinical implementation of this strategy.

5.
Biochem Biophys Res Commun ; 693: 149355, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38096617

RESUMO

Nardilysin (NRDC) is a multifunctional protein required for maintaining homeostasis in various cellular and tissue contexts. However, its role in hematopoietic stem cells (HSCs) remains unclear. Here, through the conditional deletion of NRDC in hematopoietic cells, we demonstrate that NRDC is required for HSCs expansion in vitro and the reconstitution of hematopoiesis in vivo after transplantation. We found NRDC-deficient HSCs lose their self-renewal ability and display a preferential bias to myeloid differentiation in response to replication stress. Transcriptome data analysis revealed the upregulation of heat shock response-related genes in NRDC-deficient HSCs. Additionally, we observed increased protein synthesis in cultured NRDC-deficient HSCs. Thus, loss of NRDC may cause the inability to control protein synthesis in response to replication induced protein stress, leading to the impaired HSC self-renewal ability. This highlights a novel model of action of NRDC specifically in HSCs.


Assuntos
Células-Tronco Hematopoéticas , Metaloendopeptidases , Células-Tronco Hematopoéticas/metabolismo , Metaloendopeptidases/metabolismo , Hematopoese/fisiologia , Regulação para Cima , Diferenciação Celular/genética
6.
Aging (Albany NY) ; 15(19): 9948-9964, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37793000

RESUMO

Werner syndrome (WS) is a hereditary premature aging disorder characterized by visceral fat accumulation and subcutaneous lipoatrophy, resulting in severe insulin resistance. However, its underlying mechanism remains unclear. In this study, we show that senescence-associated inflammation and suppressed adipogenesis play a role in subcutaneous adipose tissue reduction and dysfunction in WS. Clinical data from four Japanese patients with WS revealed significant associations between the decrease of areas of subcutaneous fat and increased insulin resistance measured by the glucose clamp. Adipose-derived stem cells from the stromal vascular fraction derived from WS subcutaneous adipose tissues (WSVF) showed early replicative senescence and a significant increase in the expression of senescence-associated secretory phenotype (SASP) markers. Additionally, adipogenesis and insulin signaling were suppressed in WSVF, and the expression of adipogenesis suppressor genes and SASP-related genes was increased. Rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), alleviated premature cellular senescence, rescued the decrease in insulin signaling, and extended the lifespan of WS model of C. elegans. To the best of our knowledge, this study is the first to reveal the critical role of cellular senescence in subcutaneous lipoatrophy and severe insulin resistance in WS, highlighting the therapeutic potential of rapamycin for this disease.


Assuntos
Resistência à Insulina , Insulinas , Lipodistrofia , Síndrome de Werner , Animais , Humanos , Síndrome de Werner/genética , Adipogenia/genética , Caenorhabditis elegans , Senescência Celular/genética , Gordura Subcutânea/metabolismo , Inflamação , Sirolimo , Mamíferos
7.
Hemasphere ; 7(6): e884, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37213327
8.
Biochem Biophys Res Commun ; 662: 76-83, 2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37099813

RESUMO

Human induced pluripotent stem cells (hiPSCs) genetically depleted of human leucocyte antigen (HLA) class I expression can bypass T cell alloimmunity and thus serve as a one-for-all source for cell therapies. However, these same therapies may elicit rejection by natural killer (NK) cells, since HLA class I molecules serve as inhibitory ligands of NK cells. Here, we focused on testing the capacity of endogenously developed human NK cells in humanized mice (hu-mice) using MTSRG and NSG-SGM3 strains to assay the tolerance of HLA-edited iPSC-derived cells. High NK cell reconstitution was achieved with the engraftment of cord blood-derived human hematopoietic stem cells (hHSCs) followed by the administration of human interleukin-15 (hIL-15) and IL-15 receptor alpha (hIL-15Rα). Such "hu-NK mice" rejected HLA class I-null hiPSC-derived hematopoietic progenitor cells (HPCs), megakaryocytes and T cells, but not HLA-A/B-knockout, HLA-C expressing HPCs. To our knowledge, this study is the first to recapitulate the potent endogenous NK cell response to non-tumor HLA class I-downregulated cells in vivo. Our hu-NK mouse models are suitable for the non-clinical evaluation of HLA-edited cells and will contribute to the development of universal off-the-shelf regenerative medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Camundongos , Células Matadoras Naturais , Antígenos de Histocompatibilidade Classe I/metabolismo , Linfócitos T , Antígenos HLA/metabolismo
9.
Blood ; 141(18): 2261-2274, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36790527

RESUMO

Pathogenic missense variants in SLFN14, which encode an RNA endoribonuclease protein that regulates ribosomal RNA (rRNA) degradation, are known to cause inherited thrombocytopenia (TP) with impaired platelet aggregation and adenosine triphosphate secretion. Despite mild laboratory defects, the patients displayed an obvious bleeding phenotype. However, the function of SLFN14 in megakaryocyte (MK) and platelet biology remains unknown. This study aimed to model the disease in an immortalized MK cell line (imMKCL) and to characterize the platelet transcriptome in patients with the SLFN14 K219N variant. MK derived from heterozygous and homozygous SLFN14 K219N imMKCL and stem cells of blood from patients mainly presented with a defect in proplatelet formation and mitochondrial organization. SLFN14-defective platelets and mature MK showed signs of rRNA degradation; however, this was absent in undifferentiated imMKCL cells and granulocytes. Total platelet RNA was sequenced in 2 patients and 19 healthy controls. Differential gene expression analysis yielded 2999 and 2888 significantly (|log2 fold change| >1, false discovery rate <0.05) up- and downregulated genes, respectively. Remarkably, these downregulated genes were not enriched in any biological pathway, whereas upregulated genes were enriched in pathways involved in (mitochondrial) translation and transcription, with a significant upregulation of 134 ribosomal protein genes (RPGs). The upregulation of mitochondrial RPGs through increased mammalian target of rapamycin complex 1 (mTORC1) signaling in SLFN14 K219N MK seems to be a compensatory response to rRNA degradation. mTORC1 inhibition with rapamycin resulted in further enhanced rRNA degradation in SLFN14 K219N MK. Taken together, our study indicates dysregulation of mTORC1 coordinated ribosomal biogenesis is the disease mechanism for SLFN14-related TP.


Assuntos
Trombocitopenia , Humanos , Trombocitopenia/patologia , Plaquetas/metabolismo , Ribossomos/metabolismo , Megacariócitos/patologia , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , RNA/metabolismo
10.
ALTEX ; 40(2): 204-216, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35229878

RESUMO

Although several in vitro assays that predict the sensitizing potential of chemicals have been developed, none can distinguish between chemical respiratory and skin sensitizers. Recently, we established a new three-dimensional dendritic cell (DC) coculture system consisting of a human airway epithelial cell line, immature DCs derived from human peripheral monocytes, and a human lung fibroblast cell line. In this coculture system, compared to skin sensitizers, respiratory sensitizers showed enhanced mRNA expression in DCs of the key costimulatory molecule OX40 ligand (OX40L), which is important for T helper 2 (Th2) cell differentiation. Herein, we established a new two-step DC/T cell coculture system by adding peripheral allogeneic naïve CD4+ T cells to the DCs stimulated in the DC coculture system. In this DC/T cell coculture system, model respiratory sensitizers, but not skin sensitizers, enhanced mRNA expression of the predominant Th2 marker interleukin-4 (IL-4). To improve the versatility, in place of peripheral monocytes, monocyte-derived proliferating cells called CD14-ML were used in the DC coculture system. As in peripheral monocytes, enhanced mRNA expression of OX40L was induced in CD14-ML by respiratory sensitizers compared to skin sensitizers. When these cell lines were applied to the DC/T cell coculture system with peripheral allogeneic naïve CD4+ T cells, respiratory sensitizers but not skin sensitizers enhanced the mRNA expression of IL-4. Thus, this DC/T cell coculture system may be useful for discriminating between respiratory and skin sensitizers by differential mRNA upregulation of IL-4 in T cells.


Assuntos
Técnicas de Cocultura , Interleucina-4 , Células Th2 , Humanos , Diferenciação Celular , Células Cultivadas , Células Dendríticas , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Monócitos , RNA Mensageiro/metabolismo , Células Th2/metabolismo
11.
Int J Hematol ; 117(3): 349-355, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36574167

RESUMO

Platelet transfusion is a common clinical approach to providing platelets to patients suffering from thrombocytopenia or other ailments that require an additional platelet source. However, a stable supply of platelet products is challenged by aging societies, pandemics, and other factors. Many groups have made extensive efforts toward the in vitro generation of platelets for clinical application. We established immortalized megakaryocyte progenitor cell lines (imMKCLs) from human induced pluripotent stem cells (iPSCs) and achieved clinical-scale manufacturing of iPSC-derived platelets (iPSC-PLTs) from them by identifying turbulent flow as a key physical condition. We later completed the iPLAT1 study, the first-in-human clinical trial using autologous iPSC-PLTs. This review summarizes current findings on the ex vivo generation of iPSC-PLTs that led to the iPLAT1 study and beyond. We also discuss new insights regarding the heterogeneity of megakaryocytes and the implications for the ex vivo generation of iPSC-PLTs.


Assuntos
Plaquetas , Células-Tronco Pluripotentes Induzidas , Humanos , Plaquetas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Técnicas de Cultura de Células , Megacariócitos/metabolismo , Transfusão de Plaquetas
12.
Rinsho Ketsueki ; 63(10): 1430-1439, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-36351652

RESUMO

The COVID-19 pandemic has cast a shadow over transfusion medicine based on the blood donation system. However, managing alloimmune platelet transfusion refractoriness (allo-PTR) has already been difficult. As a first step toward resolving this issue using induced pluripotent stem cell-derived platelet products (iPSC-PLTs), a clinical trial of autologous products (iPLAT1) was conducted in a patient with allo-PTR caused by anti-HPA-1a antibodies who had no compatible donor, and safety was confirmed. To produce iPSC-PLTs, a master cell bank (MCB) of expandable megakaryocyte lines (imMKCLs) is established from iPSCs. From this MCB, iPSC-PLTs are manufactured using a newly developed turbulent-type bioreactor and various compounds. Their quality, safety, and efficacy are confirmed by extensive preclinical studies. Based on the findings of the iPLAT1 study, a clinical trial of allo-transfusion of HLA homozygous iPSC-PLTs is currently ongoing and HLA class I-deficient O-type universal iPSC-PLTs are also being developed. iPSC-PLTs are expected to solve various problems, including allo-PTR in platelet transfusion, and greatly contribute to the advancement of transfusion medicine.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Trombocitopenia , Humanos , Plaquetas/metabolismo , Pandemias , Transfusão de Plaquetas
14.
Blood Adv ; 6(23): 6056-6069, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36149941

RESUMO

Donor-derived platelets are used to treat or prevent hemorrhage in patients with thrombocytopenia. However, ∼5% or more of these patients are complicated with alloimmune platelet transfusion refractoriness (allo-PTR) due to alloantibodies against HLA-I or human platelet antigens (HPA). In these cases, platelets from compatible donors are necessary, but it is difficult to find such donors for patients with rare HLA-I or HPA. To produce platelet products for patients with aplastic anemia with allo-PTR due to rare HPA-1 mismatch in Japan, we developed an ex vivo good manufacturing process (GMP)-based production system for an induced pluripotent stem cell-derived platelet product (iPSC-PLTs). Immortalized megakaryocyte progenitor cell lines (imMKCLs) were established from patient iPSCs, and a competent imMKCL clone was selected for the master cell bank (MCB) and confirmed for safety, including negativity of pathogens. From this MCB, iPSC-PLTs were produced using turbulent flow bioreactors and new drugs. In extensive nonclinical studies, iPSC-PLTs were confirmed for quality, safety, and efficacy, including hemostasis in a rabbit model. This report presents a complete system for the GMP-based production of iPSC-PLTs and the required nonclinical studies and thus supports the iPLAT1 study, the first-in-human clinical trial of iPSC-PLTs in a patient with allo-PTR and no compatible donor using the autologous product. It also serves as a comprehensive reference for the development of widely applicable allogeneic iPSC-PLTs and other cell products that use iPSC-derived progenitor cells as MCB.


Assuntos
Antígenos de Plaquetas Humanas , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes Induzidas , Trombocitopenia , Animais , Humanos , Coelhos , Transfusão de Plaquetas/efeitos adversos , Células-Tronco Pluripotentes Induzidas/metabolismo , Plaquetas/metabolismo , Trombocitopenia/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos
15.
J Clin Invest ; 132(19)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35925681

RESUMO

Infantile (fetal and neonatal) megakaryocytes (Mks) have a distinct phenotype consisting of hyperproliferation, limited morphogenesis, and low platelet production capacity. These properties contribute to clinical problems that include thrombocytopenia in neonates, delayed platelet engraftment in recipients of cord blood stem cell transplants, and inefficient ex vivo platelet production from pluripotent stem cell-derived Mks. The infantile phenotype results from deficiency of the actin-regulated coactivator, MKL1, which programs cytoskeletal changes driving morphogenesis. As a strategy to complement this molecular defect, we screened pathways with the potential to affect MKL1 function and found that DYRK1A inhibition dramatically enhanced Mk morphogenesis in vitro and in vivo. Dyrk1 inhibitors rescued enlargement, polyploidization, and thrombopoiesis in human neonatal Mks. Mks derived from induced pluripotent stem cells responded in a similar manner. Progenitors undergoing Dyrk1 inhibition demonstrated filamentous actin assembly, MKL1 nuclear translocation, and modulation of MKL1 target genes. Loss-of-function studies confirmed MKL1 involvement in this morphogenetic pathway. Expression of Ablim2, a stabilizer of filamentous actin, increased with Dyrk1 inhibition, and Ablim2 knockdown abrogated the actin, MKL1, and morphogenetic responses to Dyrk1 inhibition. These results delineate a pharmacologically tractable morphogenetic pathway whose manipulation may alleviate clinical problems associated with the limited thrombopoietic capacity of infantile Mks.


Assuntos
Megacariócitos , Trombocitopenia , Actinas/metabolismo , Plaquetas/metabolismo , Humanos , Recém-Nascido , Megacariócitos/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Trombocitopenia/genética , Trombopoese/genética , Quinases Dyrk
16.
Nat Commun ; 13(1): 2691, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577813

RESUMO

Hematopoietic stem cells (HSCs) exhibit considerable cell-intrinsic changes with age. Here, we present an integrated analysis of transcriptome and chromatin accessibility of aged HSCs and downstream progenitors. Alterations in chromatin accessibility preferentially take place in HSCs with aging, which gradually resolve with differentiation. Differentially open accessible regions (open DARs) in aged HSCs are enriched for enhancers and show enrichment of binding motifs of the STAT, ATF, and CNC family transcription factors that are activated in response to external stresses. Genes linked to open DARs show significantly higher levels of basal expression and their expression reaches significantly higher peaks after cytokine stimulation in aged HSCs than in young HSCs, suggesting that open DARs contribute to augmented transcriptional responses under stress conditions. However, a short-term stress challenge that mimics infection is not sufficient to induce persistent chromatin accessibility changes in young HSCs. These results indicate that the ongoing and/or history of exposure to external stresses may be epigenetically inscribed in HSCs to augment their responses to external stimuli.


Assuntos
Cromatina , Células-Tronco Hematopoéticas , Diferenciação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Epigênese Genética , Epigenômica , Células-Tronco Hematopoéticas/metabolismo
17.
Methods Mol Biol ; 2454: 411-422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34724185

RESUMO

The human hematopoietic differentiation in vitro of human pluripotent stem cells (hPSCs) has provided new tools to elucidate the mechanisms of related genetic abnormalities, such as congenital diseases and acquired hematopoietic malignancies, and to discover new treatments. The differentiation can also be applied to developing a stable source of blood products for transfusion with minimal risk of several blood-borne infections. We previously proposed a method for hematopoietic progenitor cell (HPC) differentiation, the "hPSC-sac method", in which hPSCs are cocultured with C3H10T1/2 mouse stromal cells and mixed with a single cytokine, VEGF. The hPSC-sac method can differentiate hPSCs to multiple blood lineages. Here we describe improvements in the method by adding bFGF, TGFß inhibitor and heparin to the culture, which increases the yield of CD34+CD43+ HPCs 50-fold compared with the original protocol. This revised hPSC-sac method is expected to contribute to the development of disease models and regenerative medicine using hematopoietic lineage cells.


Assuntos
Células-Tronco Pluripotentes , Animais , Diferenciação Celular/genética , Hematopoese , Células-Tronco Hematopoéticas , Humanos , Camundongos , Fator de Crescimento Transformador beta
18.
Stem Cell Reports ; 16(12): 2861-2870, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34861163

RESUMO

Platelet transfusions are critical for severe thrombocytopenia but depend on blood donors. The shortage of donors and the potential of universal HLA-null platelet products have stimulated research on the ex vivo differentiation of human pluripotent stem cells (hPSCs) to platelets. We recently established expandable immortalized megakaryocyte cell lines (imMKCLs) from hPSCs by transducing MYC, BMI1, and BCL-XL (MBX). imMKCLs can act as cryopreservable master cells to supply platelet concentrates. However, the proliferation rates of the imMKCLs vary with the starting hPSC clone. In this study, we reveal from the gene expression profiles of several MKCL clones that the proliferation arrest is correlated with the expression levels of specific cyclin-dependent kinase inhibitors. Silencing CDKN1A and p53 with the overexpression of MBX was effective at stably inducing imMKCLs that generate functional platelets irrespective of the hPSC clone. Collectively, this improvement in generating imMKCLs should contribute to platelet industrialization and platelet biology.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inativação Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Progenitoras de Megacariócitos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Plaquetas/metabolismo , Linhagem Celular , Proliferação de Células , Células Clonais , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação para Cima , Proteína bcl-X/metabolismo
19.
Micromachines (Basel) ; 12(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34683304

RESUMO

We previously proposed a microfluidic bioreactor with glass-Si-glass layers to evaluate the effect of the fluid force on platelet (PLT) production and fabricated a three-dimensional (3D) microchannel by combining grayscale photolithography and deep reactive ion etching. However, a challenge remains in observing the detailed process of PLT production owing to the low visibility of the microfluidic bioreactor. In this paper, we present a transparent microfluidic bioreactor made of cyclo-olefin polymer (COP) with which to observe the process of platelet-like particle (PLP) production under a bright-field, which allows us to obtain image data at a high sampling rate. We succeeded in fabricating the COP microfluidic bioreactor with a 3D microchannel. We investigated the bonding strength of COP-COP layers and confirmed the effectiveness of the microfluidic bioreactor. Results of on-chip PLP production using immortalized megakaryocyte cell lines (imMKCLs) derived from human-induced pluripotent stem cells show that the average total number of produced PLPs per imMKCL was 17.6 PLPs/imMKCL, which is comparable to that of our previous glass-Si-glass microfluidic bioreactor (17.4 PLPs/imMKCL). We succeeded in observing PLP production under a bright-field using the presented microfluidic bioreactor and confirmed that PLP fragmented in a narrow area of proplatelet-like protrusions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA