Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36904945

RESUMO

Sensor measurements diagnose and evaluate the structural health state. A sensor configuration with a limited number of sensors must be designed to monitor sufficient information about the structural health state. The diagnosis of a truss structure composed of axial members can begin with a measurement by the strain gauges attached to the truss members or by the accelerometers and displacement sensors at the nodes. This study considered the layout design of the displacement sensors at the nodes for the truss structure by using the effective independence (EI) method based on the mode shapes. The validity of the optimal sensor placement (OSP) methods depending on their synthesis with the Guyan method was investigated by the mode shape's data expansion. The Guyan reduction technique rarely affected the final sensor design. A modified EI algorithm based on the strain mode shape of the truss members was presented. A numerical example was analyzed, showing that the sensor placements were affected depending on the displacement sensors and strain gauges. Numerical examples illustrated that the strain-based EI method without the Guyan reduction method has the advantage of reducing the number of sensors and providing more data related with the displacements at the nodes. The measurement sensor should be selected when considering structural behavior, as it is crucial.

2.
Polymers (Basel) ; 14(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36433105

RESUMO

Reinforced concrete (RC) structures with non-seismic reinforcement details are vulnerable to earthquakes. This experimental study evaluates the efficiency of three techniques to alleviate the dynamic responses of existing structures: glass fiber-reinforced polyurea (GFRPU) reinforcement, a lever-typed tuned mass damper (LTMD) system, and a hybrid system of GFRPU and LTMD reinforcements. The lateral-resisting capacity and ductility of the GFRPU reinforcement specimen were enhanced by the material characteristics, and the dynamic responses were alleviated. The LTMD control specimen controlled the dynamic responses by the passive control system of the tuned mass damper (TMD), and the control forces to sustain its geometric motion were exerted on the specimen. The hybrid system was designed to control the dynamic responses by the GFRPU reinforcement and the LTMD control system. Four specimens, including an unreinforced specimen, were tested under external excitations, including the El Centro earthquake. The vibrations were more controlled in the order of the GFRPU reinforcement specimen, the LTMD control specimen, and the hybrid control specimen. The hybrid system was evaluated as excellent for seismic reinforcement, such as preventing abrupt failure with the lateral-resisting capacity and ductility of GFRPU and improving the dynamic control capacity by LTMD.

3.
Polymers (Basel) ; 14(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36080671

RESUMO

Structures constructed before seismic design standards in Korea were enacted are being seismically and structurally strengthened for structural performance. The jacket method has been used to enhance the shear load-carrying capacity and ductility of reinforced concrete columns. This study investigated the effect of glass fiber-reinforced polyurea (GFRPU) on the enhancement of shear strength and ductility. It was shown that the GFRPU spraying technique played an important role in enhancing the column because of the material characteristics of the GFRPU, that is, high-tensile strength and elongation. The reinforcement effect of GFRPU on the shear-span ratio and axial-force ratio of six reinforced concrete (RC) column specimens was evaluated. The experimental results demonstrated that the lateral-reinforcement effect and energy-dissipation capacity were improved. The H-series and S-series specimens reinforced by the GFRPU with an axial-load ratio of 0.1 exhibited higher shear strength, of about 30% and 18%, than the specimens without reinforcement. The shear-load-carrying capacity of the S-series specimen with the axial-load-force ratio of 0.2 increased by 4%. The design method representing the lateral-resistance ability of the GFRPU was represented by an empirical formula reflecting the experimental results.

4.
Sensors (Basel) ; 22(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36146107

RESUMO

The frequency response function (FRF) in the frequency domain is a black box used to collect physical information and to indicate the modal characteristics of a dynamic system. Analyzing the collected FRF data through the impact hammer test, dynamic parameters, such as stiffness, mass, and the damping matrix, can be estimated. By extracting and analyzing the FRFs within certain ranges of the lowest few resonance frequencies, this study presents a nondestructive method to estimate the dynamic parameters and the material properties. Updating of the dynamic parameters and material properties is a crucial process for the subsequent design and maintenance. This study presents a method to estimate the physical properties of structural members using measured FRF data and generalized inverse. By extracting and analyzing the FRFs within certain ranges of the lowest few resonance frequencies, the dynamic parameters were predicted. It was observed in numerical experiments that the proposed method could properly estimate the elastic modulus and dynamic parameters of steel beams, although the results were affected by the extracted FRF ranges. The physical properties were close to more accurate values in taking the FRFs at more resonance frequencies, as the member was flexible. The proposed method was also extended to a nondestructive test for an estimation of the compressive strength of concrete. However, it faced difficulty due to the external noise contained in the measured data. It was found sin the nondestructive test that the proposed technique was affected by external noise, unlike a simple steel beam. The concrete strength could be predicted by taking the FRFs in a wide frequency range containing the lowest two resonance frequencies and by averaging the repeated test results.

5.
Sensors (Basel) ; 22(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35632186

RESUMO

This study presents iterative optimal sensor placement (OSP) techniques using the modal assurance criterion (MAC) and the effective independence (EI) algorithm. The algorithms use the proper orthogonal mode (POM) extracted from the frequency response functions (FRFs) of dynamic systems within a wide range of frequencies. The FRF-based OSP method proposed in this study has the merit of reflecting dynamic characteristics, unlike the mode shape-based method. Evaluating the MAC values and the EI indices at each iteration, the DOFs of low contribution to the objective function of candidate sensor DOFs are deleted from master DOFs and moved to slave DOFs. This process is repeated until the sensor number corresponds with the master DOFs. The validity of the proposed methods is illustrated in an example, the sensor layouts by the proposed methods are compared, and the layout inconsistency between the MAC and the EI techniques is analyzed.

6.
Sensors (Basel) ; 22(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35062551

RESUMO

Sensor measurements of civil structures provide basic information on their performance. However, it is impossible to install sensors at every location owing to the limited number of sensors available. Therefore, in this study, we propose an optimal sensor placement (OSP) algorithm while reducing the system order by using the constraint condition between the master and slave modes from the target modes. The existing OSP methods are modified in this study, and an OSP approach using a constrained dynamic equation is presented. The validity and comparison of the proposed methods are illustrated by utilizing a numerical example that predicts the OSPs of the truss structure. It is observed that the proposed methods lead to different sensor layouts depending on the algorithm criteria. Thus, it can be concluded that the OSP algorithm meets the measurement requirements for various methods, such as structural damage detection, system identification, and vibration control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA