Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(4): e11235, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38623519

RESUMO

Habitat suitability models have become a valuable tool for wildlife conservation and management, and are frequently used to better understand the range and habitat requirements of rare and endangered species. In this study, we employed two habitat suitability modeling techniques, namely Boosted Regression Tree (BRT) and Maximum Entropy (Maxent) models, to identify potential suitable habitats for the endangered mountain nyala (Tragelaphus buxtoni) and environmental factors affecting its distribution in the Arsi and Ahmar Mountains of Ethiopia. Presence points, used to develop our habitat suitability models, were recorded from fecal pellet counts (n = 130) encountered along 196 randomly established transects in 2015 and 2016. Predictor variables used in our models included major landcover types, Normalized Difference Vegetation Index (NDVI), greenness and wetness tasseled cap vegetation indices, elevation, and slope. Area Under the Curve model evaluations for BRT and Maxent were 0.96 and 0.95, respectively, demonstrating high performance. Both models were then ensembled into a single binary output highlighting an area of agreement. Our results suggest that 1864 km2 (9.1%) of the 20,567 km2 study area is suitable habitat for the mountain nyala with land cover types, elevation, NDVI, and slope of the terrain being the most important variables for both models. Our results highlight the extent to which habitat loss and fragmentation have disconnected mountain nyala subpopulations. Our models demonstrate the importance of further protecting suitable habitats for mountain nyala to ensure the species' conservation.

2.
J Environ Manage ; 325(Pt A): 116611, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36419303

RESUMO

In developing countries, it is critical that novel and swift strategies are devised to help direct and prioritize potential greenhouse gas (GHG) mitigation activities. The Carbon Benefit Project (CBP) analysis tool is a modular, web-based system that allows a consistent comparison of various projects by providing a standardized GHG benefits protocol. In this study, we used the CBP tool to estimate the GHG mitigation potential of the agriculture, forestry, and other land uses (AFOLU) sector and prioritize components for their GHG benefits in three districts of Wolaita Zone, southern Ethiopia. The study area is 90,731 ha of which about 2% was covered by forest, 7% by grassland, 78% by annual crops, 12% by home garden and 1% by settlements. The livestock population in the study area was 512,622 heads. Using the CBP's Detailed Assessment, we estimated mitigation potential in the AFOLU consisting of different managements strategies for a period between 2016 and 2030 in the smallholder agricultural landscape. The results showed an overall GHG benefit of 1,725,052 (±5%) Mg CO2e from the projected scenario in the study area. The GHG benefit was in the order of biomass C (683,757 Mg CO2e) > soil C (619,210 Mg CO2e) > livestock (408,981 Mg CO2e) illustrating the greater mitigation potential of trees in different systems. The soil C plus biomass C was high in agroforestry systems, and this component had the highest priority for GHG mitigation. This was followed by high enteric methane emission reduction in the livestock category. The GHG emission from manure increased by 71,633 Mg CO2e in the project because manure was not managed. The surprisingly low GHG benefit of the forest was primarily because of its low land cover (i.e., about 2%) in the agroecosystem. Despite the low GHG benefit in the cropland from best management practices, the improved soil quality in it can affect GHG benefits from other land uses by contributing to their conservation through food security. Thus, a comprehensive project may be a viable strategy in a mitigation effort at the agroecosystem level because of the interactions amongst the components. The CBP analysis tool is useful in prioritizing mitigation activities and may be an option to quantify GHG benefits if studies collate Teir 2 factors in data scarce areas.


Assuntos
Gases de Efeito Estufa , Animais , Etiópia , Florestas , Esterco , Solo , Carbono , Gado
3.
Carbon Balance Manag ; 15(1): 8, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32410068

RESUMO

BACKGROUND: Biomass maps are valuable tools for estimating forest carbon and forest planning. Individual-tree biomass estimates made using allometric equations are the foundation for these maps, yet the potentially-high uncertainty and bias associated with individual-tree estimates is commonly ignored in biomass map error. We developed allometric equations for lodgepole pine (Pinus contorta), ponderosa pine (P. ponderosa), and Douglas-fir (Pseudotsuga menziesii) in northern Colorado. Plot-level biomass estimates were combined with Landsat imagery and geomorphometric and climate layers to map aboveground tree biomass. We compared biomass estimates for individual trees, plots, and at the landscape-scale using our locally-developed allometric equations, nationwide equations applied across the U.S., and the Forest Inventory and Analysis Component Ratio Method (FIA-CRM). Total biomass map uncertainty was calculated by propagating errors from allometric equations and remote sensing model predictions. Two evaluation methods for the allometric equations were compared in the error propagation-errors calculated from the equation fit (equation-derived) and errors from an independent dataset of destructively-sampled trees (n = 285). RESULTS: Tree-scale error and bias of allometric equations varied dramatically between species, but local equations were generally most accurate. Depending on allometric equation and evaluation method, allometric uncertainty contributed 30-75% of total uncertainty, while remote sensing model prediction uncertainty contributed 25-70%. When using equation-derived allometric error, local equations had the lowest total uncertainty (root mean square error percent of the mean [% RMSE] = 50%). This is likely due to low-sample size (10-20 trees sampled per species) allometric equations and evaluation not representing true variability in tree growth forms. When independently evaluated, allometric uncertainty outsized remote sensing model prediction uncertainty. Biomass across the 1.56 million ha study area and uncertainties were similar for local (2.1 billion Mg; % RMSE = 97%) and nationwide (2.2 billion Mg;  % RMSE = 94%) equations, while FIA-CRM estimates were lower and more uncertain (1.5 billion Mg;  % RMSE = 165%). CONCLUSIONS: Allometric equations should be selected carefully since they drive substantial differences in bias and uncertainty. Biomass quantification efforts should consider contributions of allometric uncertainty to total uncertainty, at a minimum, and independently evaluate allometric equations when suitable data are available.

4.
Ecology ; 98(4): 920-932, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28072449

RESUMO

Landsat data are increasingly used for ecological monitoring and research. These data often require preprocessing prior to analysis to account for sensor, solar, atmospheric, and topographic effects. However, ecologists using these data are faced with a literature containing inconsistent terminology, outdated methods, and a vast number of approaches with contradictory recommendations. These issues can, at best, make determining the correct preprocessing workflow a difficult and time-consuming task and, at worst, lead to erroneous results. We address these problems by providing a concise overview of the Landsat missions and sensors and by clarifying frequently conflated terms and methods. Preprocessing steps commonly applied to Landsat data are differentiated and explained, including georeferencing and co-registration, conversion to radiance, solar correction, atmospheric correction, topographic correction, and relative correction. We then synthesize this information by presenting workflows and a decision tree for determining the appropriate level of imagery preprocessing given an ecological research question, while emphasizing the need to tailor each workflow to the study site and question at hand. We recommend a parsimonious approach to Landsat preprocessing that avoids unnecessary steps and recommend approaches and data products that are well tested, easily available, and sufficiently documented. Our focus is specific to ecological applications of Landsat data, yet many of the concepts and recommendations discussed are also appropriate for other disciplines and remote sensing platforms.


Assuntos
Ecologia/métodos , Monitoramento Ambiental/métodos , Imagens de Satélites
5.
J Vis Exp ; (116)2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27768080

RESUMO

Early detection of invasive plant species is vital for the management of natural resources and protection of ecosystem processes. The use of satellite remote sensing for mapping the distribution of invasive plants is becoming more common, however conventional imaging software and classification methods have been shown to be unreliable. In this study, we test and evaluate the use of five species distribution model techniques fit with satellite remote sensing data to map invasive tamarisk (Tamarix spp.) along the Arkansas River in Southeastern Colorado. The models tested included boosted regression trees (BRT), Random Forest (RF), multivariate adaptive regression splines (MARS), generalized linear model (GLM), and Maxent. These analyses were conducted using a newly developed software package called the Software for Assisted Habitat Modeling (SAHM). All models were trained with 499 presence points, 10,000 pseudo-absence points, and predictor variables acquired from the Landsat 5 Thematic Mapper (TM) sensor over an eight-month period to distinguish tamarisk from native riparian vegetation using detection of phenological differences. From the Landsat scenes, we used individual bands and calculated Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and tasseled capped transformations. All five models identified current tamarisk distribution on the landscape successfully based on threshold independent and threshold dependent evaluation metrics with independent location data. To account for model specific differences, we produced an ensemble of all five models with map output highlighting areas of agreement and areas of uncertainty. Our results demonstrate the usefulness of species distribution models in analyzing remotely sensed data and the utility of ensemble mapping, and showcase the capability of SAHM in pre-processing and executing multiple complex models.


Assuntos
Espécies Introduzidas , Tecnologia de Sensoriamento Remoto , Tamaricaceae , Ecossistema , Modelos Teóricos , Software
6.
Environ Manage ; 58(1): 144-63, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27003689

RESUMO

Alaska has one of the most rapidly changing climates on earth and is experiencing an accelerated rate of human disturbance, including resource extraction and transportation infrastructure development. Combined, these factors increase the state's vulnerability to biological invasion, which can have acute negative impacts on ecological integrity and subsistence practices. Of growing concern is the spread of Alaska's first documented freshwater aquatic invasive plant Elodea spp. (elodea). In this study, we modeled the suitable habitat of elodea using global and state-specific species occurrence records and environmental variables, in concert with an ensemble of model algorithms. Furthermore, we sought to incorporate local subsistence concerns by using Native Alaskan knowledge and available statewide subsistence harvest data to assess the potential threat posed by elodea to Chinook salmon (Oncorhynchus tshawytscha) and whitefish (Coregonus nelsonii) subsistence. State models were applied to future climate (2040-2059) using five general circulation models best suited for Alaska. Model evaluations indicated that our results had moderate to strong predictability, with area under the receiver-operating characteristic curve values above 0.80 and classification accuracies ranging from 66 to 89 %. State models provided a more robust assessment of elodea habitat suitability. These ensembles revealed different levels of management concern statewide, based on the interaction of fish subsistence patterns, known spawning and rearing sites, and elodea habitat suitability, thus highlighting regions with additional need for targeted monitoring. Our results suggest that this approach can hold great utility for invasion risk assessments and better facilitate the inclusion of local stakeholder concerns in conservation planning and management.


Assuntos
Conservação dos Recursos Naturais/métodos , Hydrocharitaceae/crescimento & desenvolvimento , Espécies Introduzidas/tendências , Modelos Teóricos , Salmão/crescimento & desenvolvimento , Salmonidae/crescimento & desenvolvimento , Alaska , Animais , Mudança Climática , Ecossistema , Água Doce , Humanos
7.
J Environ Manage ; 168: 74-86, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26696608

RESUMO

The invasive tree Prosopis juliflora is known to cause negative impacts on invaded ranges. High P. juliflora eradication costs have swayed developing countries to follow a new and less expensive approach known as control through utilization. However, the net benefits of this new approach have not been thoroughly evaluated. Our objective was to assess the economic feasibility of selected P. juliflora eradication and utilization approaches that are currently practiced in one of the severely affected developing countries, Ethiopia. The selected approaches include converting P. juliflora infested lands into irrigated farms (conversion), charcoal production, and seed flour production. We estimate the costs and revenues of the selected P. juliflora eradication and utilization approaches by interviewing 19 enterprise owners. We assess the economic feasibility of the enterprises by performing enterprise, break-even, investment, sensitivity, and risk analyses. Our results show that conversion to irrigated cotton is economically profitable, with Net Present Value (NPV) of 5234 US$/ha over 10 years and an interest rate of 10% per year. Conversion greatly reduces the spread of P. juliflora on farmlands. Managing P. juliflora infested lands for charcoal production with a four-year harvest cycle is profitable, with NPV of 805 US$/ha. However, the production process needs vigilant regulation to protect native plants from exploitation and caution should be taken to prevent charcoal production sites from becoming potential seed sources. Though flour from P. juliflora pods can reduce invasions by destroying viable seeds, flour enterprises in Ethiopia are unprofitable. Conversion and charcoal production can be undertaken with small investment costs, while flour production requires high investment costs. Introducing new changes in the production and management steps of P. juliflora flour might be considered to make the enterprise profitable. Our study shows that control through utilization may be a viable P. juliflora management strategy under the right environmental setting.


Assuntos
Conservação dos Recursos Naturais/economia , Prosopis/crescimento & desenvolvimento , Conservação dos Recursos Naturais/métodos , Ecossistema , Monitoramento Ambiental , Etiópia , Humanos , Espécies Introduzidas , Sementes
8.
PLoS One ; 9(11): e112854, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25393396

RESUMO

We used correlative models with species occurrence points, Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices, and topo-climatic predictors to map the current distribution and potential habitat of invasive Prosopis juliflora in Afar, Ethiopia. Time-series of MODIS Enhanced Vegetation Indices (EVI) and Normalized Difference Vegetation Indices (NDVI) with 250 m2 spatial resolution were selected as remote sensing predictors for mapping distributions, while WorldClim bioclimatic products and generated topographic variables from the Shuttle Radar Topography Mission product (SRTM) were used to predict potential infestations. We ran Maxent models using non-correlated variables and the 143 species- occurrence points. Maxent generated probability surfaces were converted into binary maps using the 10-percentile logistic threshold values. Performances of models were evaluated using area under the receiver-operating characteristic (ROC) curve (AUC). Our results indicate that the extent of P. juliflora invasion is approximately 3,605 km2 in the Afar region (AUC  = 0.94), while the potential habitat for future infestations is 5,024 km2 (AUC  = 0.95). Our analyses demonstrate that time-series of MODIS vegetation indices and species occurrence points can be used with Maxent modeling software to map the current distribution of P. juliflora, while topo-climatic variables are good predictors of potential habitat in Ethiopia. Our results can quantify current and future infestations, and inform management and policy decisions for containing P. juliflora. Our methods can also be replicated for managing invasive species in other East African countries.


Assuntos
Espécies Introduzidas , Prosopis/fisiologia , Etiópia
9.
Environ Monit Assess ; 184(9): 5439-51, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21912866

RESUMO

Species distribution models are frequently used to predict species occurrences in novel conditions, yet few studies have examined the consequences of extrapolating locally collected data to regional landscapes. Similarly, the process of using regional data to inform local prediction for species distribution models has not been adequately evaluated. Using boosted regression trees, we examined errors associated with extrapolating models developed with locally collected abundance data to regional-scale spatial extents and associated with using regional data for predictions at a local extent for a native and non-native plant species across the northeastern central plains of Colorado. Our objectives were to compare model results and accuracy between those developed locally and extrapolated regionally, those developed regionally and extrapolated locally, and to evaluate extending species distribution modeling from predicting the probability of presence to predicting abundance. We developed models to predict the spatial distribution of plant species abundance using topographic, remotely sensed, land cover and soil taxonomic predictor variables. We compared model predicted mean and range abundance values to observed values between local and regional. We also evaluated model prediction performance based on Pearson's correlation coefficient. We show that: (1) extrapolating local models to regional extents may restrict predictions, (2) regional data can help refine and improve local predictions, and (3) boosted regression trees can be useful to model and predict plant species abundance. Regional sampling designed in concert with large sampling frameworks such as the National Ecological Observatory Network may improve our ability to monitor changes in local species abundance.


Assuntos
Modelos Teóricos , Plantas/classificação , Colorado , Ecossistema , Monitoramento Ambiental , Desenvolvimento Vegetal , Tecnologia de Sensoriamento Remoto , Solo/química , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA