Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 16: 857071, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450210

RESUMO

Aerial predators, such as the dragonfly, determine the position and movement of their prey even when both are moving through complex, natural scenes. This task is likely supported by a group of neurons in the optic lobe which respond to moving targets that subtend less than a few degrees. These Small Target Motion Detector (STMD) neurons are tuned to both target size and velocity, whilst also exhibiting facilitated responses to targets traveling along continuous trajectories. When presented with a pair of targets, some STMDs generate spiking activity that represent a competitive selection of one target, as if the alternative does not exist (i.e., selective attention). Here, we describe intracellular responses of CSTMD1 (an identified STMD) to the visual presentation of targets embedded within cluttered, natural scenes. We examine CSTMD1 response changes to target contrast, as well as a range of target and background velocities. We find that background motion affects CSTMD1 responses via the competitive selection between features within the natural scene. Here, robust discrimination of our artificially embedded "target" is limited to scenarios when its velocity is matched to, or greater than, the background velocity. Additionally, the background's direction of motion affects discriminability, though not in the manner observed in STMDs of other flying insects. Our results highlight that CSTMD1's competitive responses are to those features best matched to the neuron's underlying spatiotemporal tuning, whether from the embedded target or other features in the background clutter. In many scenarios, CSTMD1 responds robustly to targets moving through cluttered scenes. However, whether this neuronal system could underlie the task of competitively selecting slow moving prey against fast-moving backgrounds remains an open question.

2.
Curr Opin Insect Sci ; 42: 14-22, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32841784

RESUMO

Dragonflies belong to the oldest known lineage of flying animals, found across the globe around streams, ponds and forests. They are insect predators, specialising in ambush attack as aquatic larvae and rapid pursuit as adults. Dragonfly adults hunt amidst swarms in conditions that confuse many predatory species, and exhibit capture rates above 90%. Underlying the performance of such a remarkable predator is a finely tuned visual system capable of tracking targets amidst distractors and background clutter. The dragonfly performs a complex repertoire of flight behaviours, from near-motionless hovering to acute turns at high speeds. Here, we review the optical, neuronal, and behavioural adaptations that underlie the dragonflies' ability to achieve such remarkable predatory success.


Assuntos
Olho Composto de Artrópodes/fisiologia , Odonatos/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Navegação Espacial , Percepção Visual/fisiologia , Animais , Comportamento Competitivo , Olho Composto de Artrópodes/anatomia & histologia , Odonatos/anatomia & histologia , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA