Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Anal Methods ; 16(18): 2840-2849, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38567817

RESUMO

In previous reports, we described a PCR cycle control approach in which the hybridization state of optically labeled L-DNA enantiomers of the D-DNA primers and targets determined when the thermal cycle was switched from cooling to heating and heating to cooling. A consequence of this approach is that it also "adapts" the cycling conditions to compensate for factors that affect the hybridization kinetics of primers and targets. It assumes, however, that the hybridization state of the labeled L-DNA analogs accurately reflects the hybridization state of the D-DNA primers and targets. In this report, the Van't Hoff equation is applied to determine the L-DNA concentration and ratio of L-DNA strands required by this assumption. Simultaneous fluorescence and temperature measurements were taken during L-DNA controlled cycling, and the optical and thermal switch points compared as a function of both total L-DNA concentration and ratio of strands. Based on the Van't Hoff relationship and these experimental results, L-DNA best mirrors the hybridization of PCR primers and targets when total L-DNA concentration is set equal to the initial concentration of the D-DNA primer of interest. In terms of strand ratios, L-DNA hybridization behavior most closely matches the behavior of their D-DNA counterparts throughout the reaction when one of the L-DNA strands is far in excess of the other. The L-DNA control algorithm was then applied to the practical case of the SARS-CoV-2 N2 reaction, which has been shown to fail or have a delayed Cq when PCR was performed without nucleic acid extraction. PCR Cq values for simulated "unextracted" PCR samples in a nasopharyngeal background and in an NaCl concentration similar to that of viral transport media were determined using either the L-DNA control algorithm (N = 6) or preset cycling conditions (N = 3) and compared to water background controls run in parallel. For preset cycling conditions, the presence of nasopharyngeal background or a high salt background concentration significantly increased Cq, but the L-DNA control algorithm had no significant delay. This suggests that a carefully designed L-DNA-based control algorithm "adapts" the cycling conditions to compensate for hybridization errors of the PCR D-DNA reactants that produce false negatives.


Assuntos
DNA , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase/métodos , DNA/química , DNA/análise , SARS-CoV-2/genética , Primers do DNA/química , COVID-19 , Humanos
2.
Science ; 383(6687): 1104-1111, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38422185

RESUMO

The eradication of the viral reservoir represents the major obstacle to the development of a clinical cure for established HIV-1 infection. Here, we demonstrate that the administration of N-803 (brand name Anktiva) and broadly neutralizing antibodies (bNAbs) results in sustained viral control after discontinuation of antiretroviral therapy (ART) in simian-human AD8 (SHIV-AD8)-infected, ART-suppressed rhesus macaques. N-803+bNAbs treatment induced immune activation and transient viremia but only limited reductions in the SHIV reservoir. Upon ART discontinuation, viral rebound occurred in all animals, which was followed by durable control in approximately 70% of all N-803+bNAb-treated macaques. Viral control was correlated with the reprogramming of CD8+ T cells by N-803+bNAb synergy. Thus, complete eradication of the replication-competent viral reservoir is likely not a prerequisite for the induction of sustained remission after discontinuation of ART.


Assuntos
Antirretrovirais , Proteínas Recombinantes de Fusão , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Antirretrovirais/uso terapêutico , Antirretrovirais/farmacologia , Anticorpos Amplamente Neutralizantes/administração & dosagem , Linfócitos T CD8-Positivos/virologia , Imunoterapia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Carga Viral , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/farmacologia , Indução de Remissão , Quimioterapia Combinada
3.
PLoS Pathog ; 20(1): e1011819, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38252675

RESUMO

Fc-mediated antibody effector functions, such as antibody-dependent cellular cytotoxicity (ADCC), can contribute to the containment HIV-1 replication but whether such activities are sufficient for protection is unclear. We previously identified an antibody to the variable 2 (V2) apex of the HIV-1 Env trimer (PGT145) that potently directs the lysis of SIV-infected cells by NK cells but poorly neutralizes SIV infectivity. To determine if ADCC is sufficient for protection, separate groups of six rhesus macaques were treated with PGT145 or a control antibody (DEN3) by intravenous infusion followed five days later by intrarectal challenge with SIVmac239. Despite high concentrations of PGT145 and potent ADCC activity in plasma on the day of challenge, all animals became infected and viral loads did not differ between the PGT145- and DEN3-treated animals. To determine if PGT145 can protect against a neutralization-sensitive virus, two additional groups of six macaques were treated with PGT145 and DEN3 and challenged with an SIVmac239 variant with a single amino acid change in Env (K180S) that increases PGT145 binding and renders the virus susceptible to neutralization by this antibody. Although there was no difference in virus acquisition, peak and chronic phase viral loads were significantly lower and time to peak viremia was significantly delayed in the PGT145-treated animals compared to the DEN3-treated control animals. Env changes were also selected in the PGT145-treated animals that confer resistance to both neutralization and ADCC. These results show that ADCC is not sufficient for protection by this V2-specific antibody. However, protection may be achieved by increasing the affinity of antibody binding to Env above the threshold required for neutralization.


Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Macaca mulatta , Anticorpos Antivirais , Citotoxicidade Celular Dependente de Anticorpos
4.
Viruses ; 15(9)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766367

RESUMO

SERINC5 is a restriction factor that becomes incorporated into nascent retroviral particles, impairing their ability to infect target cells. In turn, retroviruses have evolved countermeasures against SERINC5. For instance, the primate lentiviruses (HIV and SIV) use Nef, Moloney Murine Leukemia Virus (MLV) uses GlycoGag, and Equine Infectious Anemia Virus (EIAV) uses S2 to remove SERINC5 from the plasma membrane, preventing its incorporation into progeny virions. Recent studies have shown that SERINC5 also restricts other viruses, such as Hepatitis B Virus (HBV) and Classical Swine Fever Virus (CSFV), although through a different mechanism, suggesting that SERINC5 can interfere with multiple stages of the virus life cycle. To investigate whether SERINC5 can also impact other steps of the replication cycle of HIV, the effects of SERINC5 on viral transcripts, proteins, and virus progeny size were studied. Here, we report that SERINC5 causes significant defects in HIV gene expression, which impacts virion production. While the underlying mechanism is still unknown, we found that the restriction occurs at the transcriptional level and similarly affects plasmid and non-integrated proviral DNA (ectopic or non-self-DNA). However, SERINC5 causes no defects in the expression of viral RNA, host genes, or proviral DNA that is integrated in the cellular genome. Hence, our findings reveal that SERINC5's actions in host defense extend beyond blocking virus entry.


Assuntos
Vírus da Febre Suína Clássica , Infecções por HIV , Animais , Suínos , Cavalos , Camundongos , Antivirais , DNA , Membrana Celular , Provírus , Retroviridae
5.
Nanoscale ; 15(36): 14822-14830, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37655643

RESUMO

Exhaled biologic material is the source for the spread of many respiratory tract infections. To avoid the high-level of biosafety required to manage dangerous pathogens, we developed a safer framework using the endogenous surrogate targets RNase P and Streptococcus mitis as a means to sample exhaled biologics. Our exhalation collection scheme uses nanoscale fibrous poly(vinyl alcohol) substrates as facemask inserts. After a period of breathing or speaking, the inserts are removed and dissolved. RNase P RNA and S. mitis DNA are extracted for quantification by multiplexed RT-qPCR. Both surrogate biomarkers were detected in all samples obtained during breathing for at least five minutes or speaking for one minute. Phrases repeated 30 times had the most copies with 375 ± 247 of S. mitis and 54 ± 33 of RNase P. When the phrases were repeated just 5 times, the S. mitis copies collected were still detectable but at a significantly lower level of 11 ± 5 for S. mitis and 12 ± 9 for RNase P. These results demonstrate a collection and quantification framework that can be readily adapted to further characterize the exhalation of nanoscale biologic materials from healthy individuals, explore new collection designs safely, and serve as a method to incorporate sample controls for future pathogen exhalation studies.


Assuntos
Produtos Biológicos , Nanofibras , Humanos , Expiração , Ribonuclease P , Respiração
6.
PLoS Pathog ; 19(5): e1011407, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37253062

RESUMO

Antibodies specific for diverse epitopes of the simian immunodeficiency virus envelope glycoprotein (SIV Env) have been isolated from rhesus macaques to provide physiologically relevant reagents for investigating antibody-mediated protection in this species as a nonhuman primate model for HIV/AIDS. With increasing interest in the contribution of Fc-mediated effector functions to protective immunity, we selected thirty antibodies representing different classes of SIV Env epitopes for a comparison of antibody-dependent cellular cytotoxicity (ADCC), binding to Env on the surface of infected cells and neutralization of viral infectivity. These activities were measured against cells infected with neutralization-sensitive (SIVmac316 and SIVsmE660-FL14) and neutralization-resistant (SIVmac239 and SIVsmE543-3) viruses representing genetically distinct isolates. Antibodies to the CD4-binding site and CD4-inducible epitopes were identified with especially potent ADCC against all four viruses. ADCC correlated well with antibody binding to virus-infected cells. ADCC also correlated with neutralization. However, several instances of ADCC without detectable neutralization or neutralization without detectable ADCC were observed. The incomplete correspondence between ADCC and neutralization shows that some antibody-Env interactions can uncouple these antiviral activities. Nevertheless, the overall correlation between neutralization and ADCC implies that most antibodies that are capable of binding to Env on the surface of virions to block infectivity are also capable of binding to Env on the surface of virus-infected cells to direct their elimination by ADCC.


Assuntos
Infecções por HIV , HIV-1 , Vírus da Imunodeficiência Símia , Animais , Macaca mulatta/metabolismo , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Epitopos , Glicoproteínas/metabolismo , Citotoxicidade Celular Dependente de Anticorpos
7.
J Immunol ; 210(11): 1815-1826, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37036309

RESUMO

Definition of MHC class I ligands of rhesus macaque killer cell Ig-like receptors (KIRs) is fundamental to NK cell biology in this species as an animal model for infectious diseases, reproductive biology, and transplantation. To provide a more complete foundation for studying NK cell responses, rhesus macaque KIRs representing common allotypes of lineage II KIR genes were tested for interactions with MHC class I molecules representing diverse Macaca mulatta (Mamu)-A, -B, -E, -F, -I, and -AG alleles. KIR-MHC class I interactions were identified by coincubating reporter cell lines bearing chimeric KIR-CD3ζ receptors with target cells expressing individual MHC class I molecules and were corroborated by staining with KIR IgG-Fc fusion proteins. Ligands for 12 KIRs of previously unknown specificity were identified that fell into three general categories: interactions with multiple Mamu-Bw4 molecules, interactions with Mamu-A-related molecules, including allotypes of Mamu-AG and the hybrid Mamu-B*045:03 molecule, or interactions with Mamu-A1*012:01. Whereas most KIRs found to interact with Mamu-Bw4 are inhibitory, most of the KIRs that interact with Mamu-AG are activating. The KIRs that recognize Mamu-A1*012:01 belong to a phylogenetically distinct group of macaque KIRs with a 3-aa deletion in the D0 domain that is also present in human KIR3DL1/S1 and KIR3DL2. This study more than doubles the number of rhesus macaque KIRs with defined MHC class I ligands and identifies interactions with Mamu-AG, -B*045, and -A1*012. These findings support overlapping, but nonredundant, patterns of ligand recognition that reflect extensive functional diversification of these receptors.


Assuntos
Genes MHC Classe I , Antígenos de Histocompatibilidade Classe I , Animais , Humanos , Macaca mulatta , Ligantes , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Receptores KIR/genética , Receptores KIR/metabolismo
8.
J Virol ; 97(4): e0186422, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36976017

RESUMO

The monoclonal antibodies (MAbs) NCI05 and NCI09, isolated from a vaccinated macaque that was protected from multiple simian immunodeficiency virus (SIV) challenges, both target an overlapping, conformationally dynamic epitope in SIV envelope variable region 2 (V2). Here, we show that NCI05 recognizes a CH59-like coil/helical epitope, whereas NCI09 recognizes a ß-hairpin linear epitope. In vitro, NCI05 and, to a lesser extent, NCI09 mediate the killing of SIV-infected cells in a CD4-dependent manner. Compared to NCI05, NCI09 mediates higher titers of antibody-dependent cellular cytotoxicity (ADCC) to gp120-coated cells, as well as higher levels of trogocytosis, a monocyte function that contributes to immune evasion. We also found that passive administration of NCI05 or NCI09 to macaques did not affect the risk of SIVmac251 acquisition compared to controls, demonstrating that these anti-V2 antibodies alone are not protective. However, NCI05 but not NCI09 mucosal levels strongly correlated with delayed SIVmac251 acquisition, and functional and structural data suggest that NCI05 targets a transient state of the viral spike apex that is partially opened, compared to its prefusion-closed conformation. IMPORTANCE Studies suggest that the protection against SIV/simian-human immunodeficiency virus (SHIV) acquisition afforded by the SIV/HIV V1 deletion-containing envelope immunogens, delivered by the DNA/ALVAC vaccine platform, requires multiple innate and adaptive host responses. Anti-inflammatory macrophages and tolerogenic dendritic cells (DC-10), together with CD14+ efferocytes, are consistently found to correlate with a vaccine-induced decrease in the risk of SIV/SHIV acquisition. Similarly, V2-specific antibody responses mediating ADCC, Th1 and Th2 cells expressing no or low levels of CCR5, and envelope-specific NKp44+ cells producing interleukin 17 (IL-17) also are reproducible correlates of decreased risk of virus acquisition. We focused on the function and the antiviral potential of two monoclonal antibodies (NCI05 and NCI09) isolated from vaccinated animals that differ in antiviral function in vitro and recognize V2 in a linear (NCI09) or coil/helical (NCI05) conformation. We demonstrate that NCI05, but not NCI09, delays SIVmac251 acquisition, highlighting the complexity of antibody responses to V2.


Assuntos
Anticorpos Monoclonais , Vírus da Imunodeficiência Símia , Proteínas Virais , Vírus da Imunodeficiência Símia/imunologia , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Proteínas Virais/química , Proteínas Virais/imunologia , Epitopos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Estrutura Terciária de Proteína , Modelos Moleculares , Células CHO , Cricetulus , Animais , Macaca/imunologia , Macaca/virologia , Anticorpos Antivirais/sangue
9.
J Virol ; 96(11): e0017622, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35536019

RESUMO

Most simian immunodeficiency viruses (SIVs) use Nef to counteract restriction by the tetherin proteins of their nonhuman primate hosts. In addition to counteracting tetherin, SIV Nef has a number of other functions, including the downmodulation of CD3, CD4, and major histocompatibility complex class I (MHC I) molecules from the surface of SIV-infected cells and the enhancement of viral infectivity by preventing the incorporation of SERINC5 into virions. Although these activities require different surfaces of Nef, they can be difficult to separate because of their dependence on similar interactions with AP-1 or AP-2 for clathrin-mediated endocytosis. We previously observed extensive overlap of the SIV Nef residues required for counteracting tetherin and SERINC5. Here, we define substitutions in Nef that separate anti-tetherin activity from SERINC5 antagonism and other activities of Nef. This information was used to engineer an infectious molecular clone of SIV (SIVmac239nefSA) that is sensitive to tetherin but retains CD3, CD4, MHC I, and SERINC5 downmodulation. In primary rhesus macaque CD4+ T cells, SIVmac239nefSA exhibits impaired replication compared to wild-type SIVmac239 under conditions of interferon-induced upregulation of tetherin. These results demonstrate that tetherin antagonism can be separated from other Nef functions and that resistance to tetherin is essential for optimal replication in primary CD4+ T cells. IMPORTANCE Tetherin is an interferon-inducible transmembrane protein that prevents the detachment of enveloped viruses from infected cells by physically tethering nascent virions to cellular membranes. SIV Nef downmodulates simian tetherin to overcome this restriction in nonhuman primate hosts. Nef also enhances virus infectivity by preventing the incorporation of SERINC5 into virions and contributes to immune evasion by downmodulating other proteins from the cell surface. To assess the contribution of tetherin antagonism to virus replication, we engineered an infectious molecular clone of SIV with substitutions in Nef that uncouple tetherin antagonism from other Nef functions. These substitutions impaired virus replication in interferon-treated macaque CD4+ T cells, revealing the impact of tetherin on SIV replication under physiological conditions in primary CD4+ lymphocytes.


Assuntos
Antígeno 2 do Estroma da Médula Óssea , Produtos do Gene nef , Proteínas de Membrana , Vírus da Imunodeficiência Símia , Replicação Viral , Animais , Antígeno 2 do Estroma da Médula Óssea/metabolismo , Linfócitos T CD4-Positivos , Produtos do Gene nef/genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Interferons/metabolismo , Linfócitos/metabolismo , Linfócitos/virologia , Macaca mulatta , Proteínas de Membrana/metabolismo , Vírus da Imunodeficiência Símia/fisiologia
10.
Viruses ; 14(4)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35458546

RESUMO

HIV-1 Vpu targets the host cell proteins CD4 and BST-2/Tetherin for degradation, ultimately resulting in enhanced virus spread and host immune evasion. The discovery and characterization of small molecules that antagonize Vpu would further elucidate the contribution of Vpu to pathogenesis and lay the foundation for the study of a new class of novel HIV-1 therapeutics. To identify novel compounds that block Vpu activity, we have developed a cell-based 'gain of function' assay that produces a positive signal in response to Vpu inhibition. To develop this assay, we took advantage of the viral glycoprotein, GaLV Env. In the presence of Vpu, GaLV Env is not incorporated into viral particles, resulting in non-infectious virions. Vpu inhibition restores infectious particle production. Using this assay, a high throughput screen of >650,000 compounds was performed to identify inhibitors that block the biological activity of Vpu. From this screen, we identified several positive hits but focused on two compounds from one structural family, SRI-41897 and SRI-42371. We developed independent counter-screens for off target interactions of the compounds and found no off target interactions. Additionally, these compounds block Vpu-mediated modulation of CD4, BST-2/Tetherin and antibody dependent cell-mediated toxicity (ADCC). Unfortunately, both SRI-41897 and SRI-42371 were shown to be specific to the N-terminal region of NL4-3 Vpu and did not function against other, more clinically relevant, strains of Vpu; however, this assay may be slightly modified to include more significant Vpu strains in the future.


Assuntos
Fármacos Anti-HIV , HIV-1 , Proteínas do Vírus da Imunodeficiência Humana , Proteínas Virais Reguladoras e Acessórias , Proteínas Viroporinas , Fármacos Anti-HIV/química , Antígeno 2 do Estroma da Médula Óssea/metabolismo , Proteínas Ligadas por GPI/metabolismo , HIV-1/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Vírus da Leucemia do Macaco Gibão/metabolismo , Bibliotecas de Moléculas Pequenas , Proteínas Virais Reguladoras e Acessórias/antagonistas & inibidores , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Viroporinas/antagonistas & inibidores
11.
Front Immunol ; 13: 841136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401580

RESUMO

Knowledge of the MHC class I ligands of rhesus macaque killer-cell Ig-like receptors (KIRs) is fundamental to understanding the role of natural killer (NK) cells in this species as a nonhuman primate model for infectious diseases, transplantation and reproductive biology. We previously identified Mamu-AG as a ligand for KIR3DL05. Mamu-AG is a nonclassical MHC class I molecule that is expressed at the maternal-fetal interface of the placenta in rhesus macaques similar to HLA-G in humans. Although Mamu-AG and HLA-G share similar molecular features, including limited polymorphism and a short cytoplasmic tail, Mamu-AG is considerably more polymorphic. To determine which allotypes of Mamu-AG serve as ligands for KIR3DL05, we tested reporter cell lines expressing five different alleles of KIR3DL05 (KIR3DL05*001, KIR3DL05*004, KIR3DL05*005, KIR3DL05*008 and KIR3DL05*X) for responses to target cells expressing eight different alleles of Mamu-AG. All five allotypes of KIR3DL05 responded to Mamu-AG2*01:01, two exhibited dominant responses to Mamu-AG1*05:01, and three had low but detectable responses to Mamu-AG3*03:01, -AG3*03:02, -AG3*03:03 and -AG3*03:04. Since KIR3DL05*X is the product of recombination between KIR3DL05 and KIR3DS02, we also tested an allotype of KIR3DS02 (KIR3DS02*004) and found that this activating KIR also recognizes Mamu-AG2*01:01. Additional analysis of Mamu-AG variants with single amino acid substitutions identified residues in the α1-domain essential for recognition by KIR3DL05. These results reveal variation in KIR3DL05 and KIR3DS02 responses to Mamu-AG and define Mamu-AG polymorphisms that differentially affect KIR recognition.


Assuntos
Antígenos HLA-G , Receptores KIR , Animais , Feminino , Genes MHC Classe I , Ligantes , Macaca mulatta , Gravidez , Receptores KIR/genética
12.
J Leukoc Biol ; 112(4): 759-769, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35352381

RESUMO

Nonhuman primates (NHPs) represent one of the most important models for preclinical studies of novel biomedical interventions. In contrast with small animal models, however, widespread utilization of NHPs is restricted by cost, logistics, and availability. Therefore, we sought to develop a translational primatized mouse model, akin to a humanized mouse, to allow for high-throughput in vivo experimentation leveraged to inform large animal immunology-based studies. We found that adult rhesus macaque mobilized blood (AMb) CD34+-enriched hematopoietic stem and progenitor cells (HSPCs) engrafted at low but persistent levels in immune-deficient mice harboring transgenes for human (NHP cross-reactive) GM-CSF and IL3, but did not in mice with wild-type murine cytokines lacking NHP cross-reactivity. To enhance engraftment, fetal liver-derived HSPCs were selected as the infusion product based on an increased CD34hi fraction compared with AMb and bone marrow. Coupled with cotransplantation of rhesus fetal thymic fragments beneath the mouse kidney capsule, fetal liver-derived HSPC infusion in cytokine-transgenic mice yielded robust multilineage lymphohematopoietic engraftment. The emergent immune system recapitulated that of the fetal monkey, with similar relative frequencies of lymphocyte, granulocyte, and monocyte subsets within the thymic, secondary lymphoid, and peripheral compartments. Importantly, while exhibiting a predominantly naïve phenotype, in vitro functional assays demonstrated robust cellular activation in response to nonspecific and allogenic stimuli. This primatized mouse represents a viable and translatable model for the study of hematopoietic stem cell physiology, immune development, and functional immunology in NHPs. Summary Sentence: Engraftment of rhesus macaque hematopoietic tissues in immune-deficient mice yields a robust BLT/NeoThy-type primatized mouse model for studying nonhuman primate hematopoiesis and immune function in vivo.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Transplante de Células-Tronco Hematopoéticas , Animais , Antígenos CD34 , Sangue Fetal , Células-Tronco Hematopoéticas , Humanos , Macaca mulatta , Camundongos , Camundongos SCID , Camundongos Transgênicos
13.
PLoS One ; 17(3): e0257930, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35259162

RESUMO

The novel coronavirus, SARS-CoV-2 that causes COVID-19 has resulted in the death of nearly 4 million people within the last 18 months. While preventive vaccination, and monoclonal antibody therapies have been rapidly developed and deployed, early in the pandemic the use of COVID-19 convalescent plasma (CCP) was a common means of passive immunization with a theoretical risk of antibody-dependent enhancement (ADE) of viral infection. Though vaccines elicit a strong and protective immune response and transfusion of CCP with high titers of neutralization activity are correlated with better clinical outcomes, the question of whether antibodies in CCP can enhance infection of SARS-CoV-2 has not been directly addressed. In this study, we analyzed for and observed passive transfer of neutralization activity with CCP transfusion. Furthermore, to specifically understand if antibodies against the spike protein (S) enhance infection, we measured the anti-S IgG, IgA, and IgM responses and adapted retroviral-pseudotypes to measure virus neutralization with target cells expressing the ACE2 virus receptor and the Fc alpha receptor (FcαR) or Fc gamma receptor IIA (FcγRIIA). Whereas neutralizing activity of CCP correlated best with higher titers of anti-S IgG antibodies, the neutralizing titer was not affected when Fc receptors were present on target cells. These observations support the absence of antibody-dependent enhancement of infection (ADE) by IgG and IgA isotypes found in CCP. The results presented, therefore, not only supports the therapeutic use of currently available antibody-based treatment, including the continuation of CCP transfusion strategies, but also the use of various vaccine platforms in a prophylactic approach.


Assuntos
COVID-19/terapia , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , COVID-19/virologia , Feminino , Células HEK293 , Humanos , Imunização Passiva , Imunoglobulina A/sangue , Imunoglobulina A/uso terapêutico , Imunoglobulina G/sangue , Imunoglobulina G/uso terapêutico , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Receptores de IgG/genética , Receptores de IgG/metabolismo , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Adulto Jovem , Soroterapia para COVID-19
14.
bioRxiv ; 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34545365

RESUMO

The novel coronavirus SARS-CoV2, which causes COVID-19, has resulted in the death of nearly 4 million people within the last 18 months. While preventive vaccination and monoclonal antibody therapies have been rapidly developed and deployed, early in the pandemic the use of COVID-19 convalescent plasma (CCP) was a common means of passive immunization, with the theoretical risk of antibody-dependent enhancement (ADE) of viral infection remaining undetermined. Though vaccines elicit a strong and protective immune response, and transfusion of CCP with high titers of neutralization activity are correlated with better clinical outcomes, the question of whether antibodies in CCP can enhance infection of SARS-CoV2 has not been directly addressed. In this study, we analyzed for and observed passive transfer of neutralization activity with CCP transfusion. Furthermore, to specifically understand if antibodies against the spike protein (S) enhance infection, we measured the anti-S IgG, IgA, and IgM responses and adapted retroviral-pseudotypes to measure virus neutralization with target cells expressing the ACE2 virus receptor and the Fc alpha receptor (FcαR) or Fc gamma receptor IIA (FcγRIIA). Whereas neutralizing activity of CCP correlated best with higher titers of anti-S IgG antibodies, the neutralizing titer was not affected when Fc receptors were present on target cells. These observations support the absence of antibody-dependent enhancement of infection (ADE) by IgG and IgA isotypes found in CCP. The results presented, therefore, support the clinical use of currently available antibody-based treatment including the continued study of CCP transfusion strategies.

15.
J Virol ; 95(18): e0079621, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34232070

RESUMO

The activity of broadly neutralizing antibodies (bNAbs) targeting HIV-1 depends on pleiotropic functions, including viral neutralization and the elimination of HIV-1-infected cells. Several in vivo studies have suggested that passive administration of bNAbs represents a valuable strategy for the prevention or treatment of HIV-1. In addition, different strategies are currently being tested to scale up the production of bNAbs to obtain the large quantities of antibodies required for clinical trials. Production of antibodies in plants permits low-cost and large-scale production of valuable therapeutics; furthermore, pertinent to this work, it also includes an advanced glycoengineering platform. In this study, we used Nicotiana benthamiana to produce different Fc-glycovariants of a potent bNAb, PGT121, with near-homogeneous profiles and evaluated their antiviral activities. Structural analyses identified a close similarity in overall structure and glycosylation patterns of Fc regions for these plant-derived Abs and mammalian cell-derived Abs. When tested for Fc-effector activities, afucosylated PGT121 showed significantly enhanced FcγRIIIa interaction and antibody dependent cellular cytotoxicity (ADCC) against primary HIV-1-infected cells, both in vitro and ex vivo. However, the overall galactosylation profiles of plant PGT121 did not affect ADCC activities against infected primary CD4+ T cells. Our results suggest that the abrogation of the Fc N-linked glycan fucosylation of PGT121 is a worthwhile strategy to boost its Fc-effector functionality. IMPORTANCE PGT121 is a highly potent bNAb and its antiviral activities for HIV-1 prevention and therapy are currently being evaluated in clinical trials. The importance of its Fc-effector functions in clearing HIV-1-infected cells is also under investigation. Our results highlight enhanced Fc-effector activities of afucosylated PGT121 MAbs that could be important in a therapeutic context to accelerate infected cell clearance and slow disease progression. Future studies to evaluate the potential of plant-produced afucosylated PGT121 in controlling HIV-1 replication in vivo are warranted.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/administração & dosagem , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Anticorpos Anti-HIV/administração & dosagem , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Polissacarídeos/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Glicosilação , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Nicotiana/imunologia , Nicotiana/virologia
16.
PLoS One ; 16(7): e0253551, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34310603

RESUMO

BACKGROUND: The novel coronavirus SARS-CoV2 that causes COVID-19 has resulted in the death of more than 2.5 million people, but no cure exists. Although passive immunization with COVID-19 convalescent plasma (CCP) provides a safe and viable therapeutic option, the selection of optimal units for therapy in a timely fashion remains a barrier. STUDY DESIGN AND METHODS: Since virus neutralization is a necessary characteristic of plasma that can benefit recipients, the neutralizing titers of plasma samples were measured using a retroviral-pseudotype assay. Binding antibody titers to the spike (S) protein were also determined by a clinically available serological assay (Ortho-Vitros total IG), and an in-house ELISA. The results of these assays were compared to a measurement of antibodies directed to the receptor binding domain (RBD) of the SARS-CoV2 S protein (Promega Lumit Dx). RESULTS: All measures of antibodies were highly variable, but correlated, to different degrees, with each other. However, the anti-RBD antibodies correlated with viral neutralizing titers to a greater extent than the other antibody assays. DISCUSSION: Our observations support the use of an anti-RBD assay such as the Lumit Dx assay, as an optimal predictor of the neutralization capability of CCP.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/terapia , Imunoglobulina G/sangue , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Doadores de Sangue , COVID-19/diagnóstico , COVID-19/imunologia , COVID-19/virologia , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Soros Imunes/química , Imunização Passiva/métodos , Testes de Neutralização , Valor Preditivo dos Testes , Ligação Proteica , Domínios Proteicos , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/imunologia , Soroterapia para COVID-19
17.
medRxiv ; 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33758874

RESUMO

BACKGROUND: The novel coronavirus SARS-CoV2 that causes COVID-19 has resulted in the death of more than 2.5 million people, but no cure exists. Although passive immunization with COVID-19 convalescent plasma (CCP) provides a safe and viable therapeutic option, the selection of optimal units for therapy in a timely fashion remains a barrier. STUDY DESIGN AND METHODS: Since virus neutralization is a necessary characteristic of plasma that can benefit recipients, the neutralizing titers of plasma samples were measured using a retroviral-pseudotype assay. Binding antibody titers to the spike (S) protein were also determined by a clinically available serological assay (Ortho-Vitros total IG), and an in-house ELISA. The results of these assays were compared to a measurement of antibodies directed to the receptor binding domain (RBD) of the SARS-CoV2 S protein (Promega Lumit Dx). RESULTS: All measures of antibodies were highly variable, but correlated, to different degrees, with each other. However, the anti-RBD antibodies correlated with viral neutralizing titers to a greater extent than the other antibody assays. DISCUSSION: Our observations support the use of an anti-RBD assay such as the Lumit Dx assay, as an optimal predictor of the neutralization capability of CCP.

18.
J Virol ; 95(8)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504599

RESUMO

The Nef proteins of HIV-1 and SIV enhance viral infectivity by preventing the incorporation of the multipass transmembrane protein serine incorporator 5 (SERINC5), and to a lesser extent SERINC3, into virions. In addition to counteracting SERINCs, SIV Nef also downmodulates several transmembrane proteins from the surface of virus-infected cells, including simian tetherin, CD4 and MHC class I (MHC I) molecules. From a systematic analysis of alanine substitutions throughout the SIVmac239 Nef protein, we identified residues that are required to counteract SERINC5. This information was used to engineer an infectious molecular clone of SIV (SIVmac239nef AV), which differs by two amino acids in the N-terminal domain of Nef that make the virus sensitive to SERINC5 while retaining other activities of Nef. SIVmac239nef AV downmodulates CD3, CD4, MHC I and simian tetherin, but cannot counteract SERINC5. In primary rhesus macaque CD4+ T cells, SIVmac239nef AV exhibits impaired infectivity and replication compared to wild-type SIVmac239. These results demonstrate that SERINC5 antagonism can be separated from other Nef functions and reveal the impact of SERINC5 on lentiviral replication.Importance: SERINC5, a multipass transmembrane protein, is incorporated into retroviral particles during assembly. This leads to a reduction of particle infectivity by inhibiting virus fusion with the target cell membrane. The Nef proteins of HIV-1 and SIV enhance viral infectivity by preventing the incorporation of SERINC5 into virions. However, the relevance of this restriction factor in viral replication has not been elucidated. Here we report a systematic mapping of Nef residues required for SERINC5 antagonism. Counter screens for three other functions of Nef helped identify two residues in the N-terminal domain of Nef, which when mutated make Nef selectively susceptible to SERINC5. Since Nef is multi-functional, genetic separation of SERINC5 antagonism from its other functions affords comparison of the replication of isogenic viruses that are or are not sensitive to SERINC5. Such a strategy revealed the impact of SERINC5 on SIV replication in primary rhesus macaque CD4+ T-cells.

19.
Cytometry A ; 99(3): 278-288, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32713108

RESUMO

A vaccine to ameliorate cytomegalovirus (CMV)-related pathogenicity in transplantation patients is considered a top priority. A therapeutic vaccine must include components that elicit both neutralizing antibodies, and highly effective CD8 T-cell responses. The most important translational model of vaccine development is the captive-bred rhesus macaque (Macaca mulatta) of Indian origin. There is a dearth of information on rhesus cytomegalovirus (rhCMV)-specific CD8 T cells due to the absence of well-defined CD8 T-cell epitopes presented by classical MHC-I molecules. In the current study, we defined two CD8 T-cell epitopes restricted by high-frequency Mamu alleles: the Mamu-A1*002:01 restricted VY9 (VTTLGMALY aa291-299) epitope of protein IE-1, and the Mamu-A1*008:01 restricted NP8 (NPTDRPIP aa96-103) epitope of protein phosphoprotein 65-2. We developed tetramers and determined the level, phenotype, and functional capability of the two epitope-specific T-cell populations in circulation and various tissues. We demonstrated the value of these tetramers for in situ tetramer staining. Here, we first provided critical reagents and established a flow cytometric staining strategy to study rhCMV-specific T-cell responses in up to 40% of captive-bred rhesus macaques. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.


Assuntos
Infecções por Citomegalovirus , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD8-Positivos , Citomegalovirus , Epitopos de Linfócito T , Antígenos de Histocompatibilidade Classe I , Humanos , Imunofenotipagem , Macaca mulatta
20.
J Immunol ; 205(12): 3319-3332, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33208458

RESUMO

The rhesus macaque is an important animal model for AIDS and other infectious diseases. However, the investigation of Fc-mediated Ab responses in macaques is complicated by species-specific differences in FcγRs and IgG subclasses relative to humans. To assess the effects of these differences on FcγR-IgG interactions, reporter cell lines expressing common allotypes of human and rhesus macaque FcγR2A and FcγR3A were established. FcγR-mediated responses to B cells were measured in the presence of serial dilutions of anti-CD20 Abs with Fc domains corresponding to each of the four subclasses of human and rhesus IgG and with Fc variants of IgG1 that enhance binding to FcγR2A or FcγR3A. All of the FcγRs were functional and preferentially recognized either IgG1 or IgG2. Whereas allotypes of rhesus FcγR2A were identified with responses similar to variants of human FcγR2A with higher (H131) and lower (R131) affinity for IgG, all of the rhesus FcγR3A allotypes exhibited responses most similar to the higher affinity V158 variant of human FcγR3A. Unlike responses to human IgGs, there was little variation in FcγR-mediated responses to different subclasses of rhesus IgG. Phylogenetic comparisons suggest that this reflects limited sequence variation of macaque IgGs as a result of their relatively recent diversification from a common IGHG gene since humans and macaques last shared a common ancestor. These findings reveal species-specific differences in FcγR-IgG interactions with important implications for investigating Ab effector functions in macaques.


Assuntos
Linfócitos B/imunologia , Imunoglobulina G/imunologia , Receptores de IgG/imunologia , Animais , Linhagem Celular , Humanos , Macaca mulatta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA