Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 12116, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108538

RESUMO

In grazing systems, urine patches deposited by livestock are hotspots of nutrient cycling and the most important source of nitrous oxide (N2O) emissions. Studies of the effects of urine deposition, including, for example, the determination of country-specific N2O emission factors, require natural urine for use in experiments and face challenges obtaining urine of the same composition, but of differing concentrations. Yet, few studies have explored the importance of storage conditions and processing of ruminant urine for use in subsequent gaseous emission experiments. We conducted three experiments with sheep urine to determine optimal storage conditions and whether partial freeze-drying could be used to concentrate the urine, while maintaining the constituent profile and the subsequent urine-derived gaseous emission response once applied to soil. We concluded that filtering of urine prior to storage, and storage at - 20 °C best maintains the nitrogen-containing constituent profile of sheep urine samples. In addition, based on the 14 urine chemical components determined in this study, partial lyophilisation of sheep urine to a concentrate represents a suitable approach to maintain the constituent profile at a higher overall concentration and does not alter sheep urine-derived soil gaseous emissions.


Assuntos
Liofilização/normas , Ciclo do Nitrogênio , Nitrogênio/urina , Óxido Nitroso/urina , Manejo de Espécimes/normas , Animais , Liofilização/métodos , Ovinos , Manejo de Espécimes/métodos
2.
Glob Chang Biol ; 26(4): 2002-2013, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31975492

RESUMO

Nitrous oxide (N2 O) is an air pollutant of major environmental concern, with agriculture representing 60% of anthropogenic global N2 O emissions. Much of the N2 O emissions from livestock production systems result from transformation of N deposited to soil within animal excreta. There exists a substantial body of literature on urine patch N2 O dynamics, we aimed to identify key controlling factors influencing N2 O emissions and to aid understanding of knowledge gaps to improve GHG reporting and prioritize future research. We conducted an extensive literature review and random effect meta-analysis (using REML) of results to identify key relationships between multiple potential independent factors and global N2 O emissions factors (EFs) from urine patches. Mean air temperature, soil pH and ruminant animal species (sheep or cow) were significant factors influencing the EFs reviewed. However, several factors that are known to influence N2 O emissions, such as animal diet and urine composition, could not be considered due to the lack of reported data. The review highlighted a widespread tendency for inadequate metadata and uncertainty reporting in the published studies, as well as the limited geographical extent of investigations, which are more often conducted in temperate regions thus far. Therefore, here we give recommendations for factors that are likely to affect the EFs and should be included in all future studies, these include the following: soil pH and texture; experimental set-up; direct measurement of soil moisture and temperature during the study period; amount and composition of urine applied; animal type and diet; N2 O emissions with a measure of uncertainty; data from a control with zero-N application and meteorological data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA