RESUMO
Clathrin-mediated endocytosis (CME) is the main mechanism by which mammalian cells control their cell surface proteome. Proper operation of the pivotal CME cargo adaptor AP2 requires membrane-localized Fer/Cip4 homology domain-only proteins (FCHO). Here, live-cell enhanced total internal reflection fluorescence-structured illumination microscopy shows that FCHO marks sites of clathrin-coated pit (CCP) initiation, which mature into uniform-sized CCPs comprising a central patch of AP2 and clathrin corralled by an FCHO/Epidermal growth factor potential receptor substrate number 15 (Eps15) ring. We dissect the network of interactions between the FCHO interdomain linker and AP2, which concentrates, orients, tethers, and partially destabilizes closed AP2 at the plasma membrane. AP2's subsequent membrane deposition drives its opening, which triggers FCHO displacement through steric competition with phosphatidylinositol 4,5-bisphosphate, clathrin, cargo, and CME accessory factors. FCHO can now relocate toward a CCP's outer edge to engage and activate further AP2s to drive CCP growth/maturation.
RESUMO
Clathrin-mediated endocytosis (CME) is key to maintaining the transmembrane protein composition of cells' limiting membranes. During mammalian CME, a reversible phosphorylation event occurs on Thr156 of the µ2 subunit of the main endocytic clathrin adaptor, AP2. We show that this phosphorylation event starts during clathrin-coated pit (CCP) initiation and increases throughout CCP lifetime. µ2Thr156 phosphorylation favors a new, cargo-bound conformation of AP2 and simultaneously creates a binding platform for the endocytic NECAP proteins but without significantly altering AP2's cargo affinity in vitro. We describe the structural bases of both. NECAP arrival at CCPs parallels that of clathrin and increases with µ2Thr156 phosphorylation. In turn, NECAP recruits drivers of late stages of CCP formation, including SNX9, via a site distinct from where NECAP binds AP2. Disruption of the different modules of this phosphorylation-based temporal regulatory system results in CCP maturation being delayed and/or stalled, hence impairing global rates of CME.
Assuntos
Complexo 2 de Proteínas Adaptadoras/genética , Subunidades alfa do Complexo de Proteínas Adaptadoras/genética , Endocitose/genética , Nexinas de Classificação/genética , Complexo 2 de Proteínas Adaptadoras/metabolismo , Clatrina/genética , Clatrina/metabolismo , Vesículas Revestidas por Clatrina/genética , Vesículas Revestidas por Clatrina/metabolismo , Invaginações Revestidas da Membrana Celular/genética , Invaginações Revestidas da Membrana Celular/metabolismo , Humanos , Fosforilação/genética , Ligação Proteica/genéticaRESUMO
Coatomer consists of two subcomplexes: the membrane-targeting, ADP ribosylation factor 1 (Arf1):GTP-binding ßγδζ-COP F-subcomplex, which is related to the adaptor protein (AP) clathrin adaptors, and the cargo-binding αß'ε-COP B-subcomplex. We present the structure of the C-terminal µ-homology domain of the yeast δ-COP subunit in complex with the WxW motif from its binding partner, the endoplasmic reticulum-localized Dsl1 tether. The motif binds at a site distinct from that used by the homologous AP µ subunits to bind YxxΦ cargo motifs with its two tryptophan residues sitting in compatible pockets. We also show that the Saccharomyces cerevisiae Arf GTPase-activating protein (GAP) homolog Gcs1p uses a related WxxF motif at its extreme C terminus to bind to δ-COP at the same site in the same way. Mutations designed on the basis of the structure in conjunction with isothermal titration calorimetry confirm the mode of binding and show that mammalian δ-COP binds related tryptophan-based motifs such as that from ArfGAP1 in a similar manner. We conclude that δ-COP subunits bind Wxn(1-6)[WF] motifs within unstructured regions of proteins that influence the lifecycle of COPI-coated vesicles; this conclusion is supported by the observation that, in the context of a sensitizing domain deletion in Dsl1p, mutating the tryptophan-based motif-binding site in yeast causes defects in both growth and carboxypeptidase Y trafficking/processing.
Assuntos
Proteína Coatomer/química , Saccharomyces cerevisiae/química , Triptofano/química , Motivos de Aminoácidos , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/química , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Calorimetria Indireta , Catepsina A/química , Catepsina A/genética , Catepsina A/metabolismo , Proteína Coatomer/genética , Proteína Coatomer/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Triptofano/genética , Triptofano/metabolismoRESUMO
VARP is a Rab32/38 effector that also binds to the endosomal/lysosomal R-SNARE VAMP7. VARP binding regulates VAMP7 participation in SNARE complex formation and can therefore influence VAMP7-mediated membrane fusion events. Mutant versions of VARP that cannot bind Rab32:GTP, designed on the basis of the VARP ankyrin repeat/Rab32:GTP complex structure described here, unexpectedly retain endosomal localization, showing that VARP recruitment is not dependent on Rab32 binding. We show that recruitment of VARP to the endosomal membrane is mediated by its direct interaction with VPS29, a subunit of the retromer complex, which is involved in trafficking from endosomes to the TGN and the cell surface. Transport of GLUT1 from endosomes to the cell surface requires VARP, VPS29, and VAMP7 and depends on the direct interaction between VPS29 and VARP. Finally, we propose that endocytic cycling of VAMP7 depends on its interaction with VARP and, consequently, also on retromer.
Assuntos
Membrana Celular/metabolismo , Endossomos/fisiologia , Transportador de Glucose Tipo 1/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Western Blotting , Cristalografia por Raios X , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Imunoprecipitação , Dados de Sequência Molecular , Proteínas Musculares/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Transporte Proteico , Proteínas R-SNARE/química , Proteínas R-SNARE/genética , Proteínas Repressoras/metabolismo , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genéticaRESUMO
Following integration of the observed diffraction spots, the process of `data reduction' initially aims to determine the point-group symmetry of the data and the likely space group. This can be performed with the program POINTLESS. The scaling program then puts all the measurements on a common scale, averages measurements of symmetry-related reflections (using the symmetry determined previously) and produces many statistics that provide the first important measures of data quality. A new scaling program, AIMLESS, implements scaling models similar to those in SCALA but adds some additional analyses. From the analyses, a number of decisions can be made about the quality of the data and whether some measurements should be discarded. The effective `resolution' of a data set is a difficult and possibly contentious question (particularly with referees of papers) and this is discussed in the light of tests comparing the data-processing statistics with trials of refinement against observed and simulated data, and automated model-building and comparison of maps calculated with different resolution limits. These trials show that adding weak high-resolution data beyond the commonly used limits may make some improvement and does no harm.
Assuntos
Algoritmos , Cristalografia por Raios X , Interpretação Estatística de Dados , Interpretação de Imagem Assistida por Computador , Anisotropia , Simulação por Computador , Modelos Moleculares , SoftwareRESUMO
COPI mediates retrograde trafficking from the Golgi to the endoplasmic reticulum (ER) and within the Golgi stack, sorting transmembrane proteins bearing C-terminal KKxx or KxKxx motifs. The structure of KxKxx motifs bound to the N-terminal WD-repeat domain of ß'-COP identifies electrostatic contacts between the motif and complementary patches at the center of the ß'-COP propeller. An absolute requirement of a two-residue spacing between the terminal carboxylate group and first lysine residue results from interactions of carbonyl groups in the motif backbone with basic side chains of ß'-COP. Similar interactions are proposed to mediate binding of KKxx motifs by the homologous α-COP domain. Mutation of key interacting residues in either domain or in their cognate motifs abolishes in vitro binding and results in mistrafficking of dilysine-containing cargo in yeast without compromising cell viability. Flexibility between ß'-COP WD-repeat domains and the location of cargo binding have implications for COPI coat assembly.
Assuntos
Complexo I de Proteína do Envoltório/metabolismo , Proteína Coatomer/metabolismo , Dipeptídeos/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Complexo I de Proteína do Envoltório/química , Complexo I de Proteína do Envoltório/genética , Proteína Coatomer/química , Proteína Coatomer/genética , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Modelos Moleculares , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/síntese química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
SNAREs provide energy and specificity to membrane fusion events. Fusogenic trans-SNARE complexes are assembled from glutamine-contributing SNAREs (Q-SNAREs) embedded in one membrane and an arginine-contributing SNARE (R-SNARE) embedded in the other. Regulation of membrane fusion events is crucial for intracellular trafficking. We identify the endosomal protein Varp as an R-SNARE-binding regulator of SNARE complex formation. Varp colocalizes with and binds to VAMP7, an R-SNARE that is involved in both endocytic and secretory pathways. We present the structure of the second ankyrin repeat domain of mammalian Varp in complex with the cytosolic portion of VAMP7. The VAMP7-SNARE motif is trapped between Varp and the VAMP7 longin domain, and hence Varp kinetically inhibits the ability of VAMP7 to form SNARE complexes. This inhibition will be increased when Varp can also bind to other proteins present on the same membrane as VAMP7, such as Rab32-GTP.
Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Eletroforese em Gel de Poliacrilamida , Endocitose , Humanos , Cinética , Conformação Proteica , Proteínas R-SNARERESUMO
VAMP7 is involved in the fusion of late endocytic compartments with other membranes. One possible mechanism of VAMP7 delivery to these late compartments is via the AP3 trafficking adaptor. We show that the linker of the δ-adaptin subunit of AP3 binds the VAMP7 longin domain and determines the structure of their complex. Mutation of residues on both partners abolishes the interaction in vitro and in vivo. The binding of VAMP7 to δ-adaptin requires the VAMP7 SNARE motif to be engaged in SNARE complex formation and hence AP3 must transport VAMP7 when VAMP7 is part of a cis-SNARE complex. The absence of δ-adaptin causes destabilization of the AP3 complex in mouse mocha fibroblasts and mislocalization of VAMP7. The mislocalization can be rescued by transfection with wild-type δ-adaptin but not by δ-adaptin containing mutations that abolish VAMP7 binding, despite in all cases intact AP3 being present and LAMP1 trafficking being rescued.
Assuntos
Complexo 3 de Proteínas Adaptadoras/metabolismo , Subunidades delta do Complexo de Proteínas Adaptadoras/metabolismo , Transporte Proteico/fisiologia , Proteínas R-SNARE/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Membrana Celular/metabolismo , Cristalografia por Raios X , Endocitose , Endossomos/metabolismo , Fibroblastos , Citometria de Fluxo , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estrutura Terciária de ProteínaRESUMO
Cell motility, adhesion and phagocytosis are controlled by actin and membrane remodelling processes. Bridging integrator-2 (Bin2) also called Breast cancer-associated protein 1 (BRAP1) is a predicted N-BAR domain containing protein with unknown function that is highly expressed in leucocytic cells. In the present study we solved the structure of Bin2 BAR domain and studied its membrane binding and bending properties in vitro and in vivo. Live-cell imaging experiments showed that Bin2 is associated with actin rich structures on the plasma membrane, where it was targeted through its N-BAR domain. Pull-down experiments and immunoprecipitations showed that Bin2 C-terminus bound SH3 domain containing proteins such as Endophilin A2 and α-PIX. siRNA of endogenous protein led to decreased cell migration, increased phagocytosis and reduced podosome density and dynamics. In contrast, overexpression of Bin2 led to decreased phagocytosis and increased podosome density and dynamics. We conclude that Bin2 is a membrane-sculpting protein that influences podosome formation, motility and phagocytosis in leucocytes. Further understanding of this protein may be key to understand the behaviour of leucocytes under physiological and pathological conditions.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Extensões da Superfície Celular/metabolismo , Leucócitos/citologia , Leucócitos/metabolismo , Proteínas de Membrana/metabolismo , Fagocitose , Sequência de Aminoácidos , Animais , Adesão Celular , Movimento Celular , Cristalografia por Raios X , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Proteínas de Membrana/química , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico , Ratos , Domínios de Homologia de srcRESUMO
This paper presents an overview of how to run the CCP4 programs for data reduction (SCALA, POINTLESS and CTRUNCATE) through the CCP4 graphical interface ccp4i and points out some issues that need to be considered, together with a few examples. It covers determination of the point-group symmetry of the diffraction data (the Laue group), which is required for the subsequent scaling step, examination of systematic absences, which in many cases will allow inference of the space group, putting multiple data sets on a common indexing system when there are alternatives, the scaling step itself, which produces a large set of data-quality indicators, estimation of |F| from intensity and finally examination of intensity statistics to detect crystal pathologies such as twinning. An appendix outlines the scoring schemes used by the program POINTLESS to assign probabilities to possible Laue and space groups.
Assuntos
Cristalografia por Raios X/métodos , Análise Numérica Assistida por Computador , Probabilidade , SoftwareRESUMO
The AP2 adaptor complex (alpha, beta2, sigma2, and mu2 subunits) crosslinks the endocytic clathrin scaffold to PtdIns4,5P(2)-containing membranes and transmembrane protein cargo. In the "locked" cytosolic form, AP2's binding sites for the two endocytic motifs, YxxPhi on the C-terminal domain of mu2 (C-mu2) and [ED]xxxL[LI] on sigma2, are blocked by parts of beta2. Using protein crystallography, we show that AP2 undergoes a large conformational change in which C-mu2 relocates to an orthogonal face of the complex, simultaneously unblocking both cargo-binding sites; the previously unstructured mu2 linker becomes helical and binds back onto the complex. This structural rearrangement results in AP2's four PtdIns4,5P(2)- and two endocytic motif-binding sites becoming coplanar, facilitating their simultaneous interaction with PtdIns4,5P(2)/cargo-containing membranes. Using a range of biophysical techniques, we show that the endocytic cargo binding of AP2 is driven by its interaction with PtdIns4,5P(2)-containing membranes.
Assuntos
Complexo 2 de Proteínas Adaptadoras/química , Sítios de Ligação , Membrana Celular/química , Ligantes , Modelos Moleculares , Fosfatidilinositóis/química , Conformação ProteicaRESUMO
SNAREs provide the specificity and energy for the fusion of vesicles with their target membrane, but how they are sorted into the appropriate vesicles on post-Golgi trafficking pathways is largely unknown. We demonstrate that the clathrin-mediated endocytosis of the SNARE VAMP7 is directly mediated by Hrb, a clathrin adaptor and ArfGAP. Hrb wraps 20 residues of its unstructured C-terminal tail around the folded VAMP7 longin domain, demonstrating that unstructured regions of clathrin adaptors can select cargo. Disrupting this interaction by mutation of the VAMP7 longin domain or depletion of Hrb causes VAMP7 to accumulate on the cell's surface. However, the SNARE helix of VAMP7 binds back onto its longin domain, outcompeting Hrb for binding to the same groove and suggesting that Hrb-mediated endocytosis of VAMP7 occurs only when VAMP7 is incorporated into a cis-SNARE complex. These results elucidate the mechanism of retrieval of a postfusion SNARE complex in clathrin-coated vesicles.
Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Proteínas R-SNARE/química , Proteínas R-SNARE/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Endocitose , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Transporte Proteico , Técnicas do Sistema de Duplo-HíbridoAssuntos
Complexo 2 de Proteínas Adaptadoras/química , Complexo 2 de Proteínas Adaptadoras/metabolismo , Antígenos CD4/química , Antígenos CD4/metabolismo , Endocitose , Leucina/metabolismo , Complexo 2 de Proteínas Adaptadoras/genética , Motivos de Aminoácidos , Animais , Sítios de Ligação , Sequência Conservada , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RatosRESUMO
A spectrum of membrane curvatures exists within cells, and proteins have evolved different modules to detect, create, and maintain these curvatures. Here we present the crystal structure of one such module found within human FCHo2. This F-BAR (extended FCH) module consists of two F-BAR domains, forming an intrinsically curved all-helical antiparallel dimer with a Kd of 2.5 microM. The module binds liposomes via a concave face, deforming them into tubules with variable diameters of up to 130 nm. Pulse EPR studies showed the membrane-bound dimer is the same as the crystal dimer, although the N-terminal helix changed conformation on membrane binding. Mutation of a phenylalanine on this helix partially attenuated narrow tubule formation, and resulted in a gain of curvature sensitivity. This structure shows a distant relationship to curvature-sensing BAR modules, and suggests how similar coiled-coil architectures in the BAR superfamily have evolved to expand the repertoire of membrane-sculpting possibilities.
Assuntos
Membrana Celular/química , Modelos Moleculares , Proteínas/química , Sequência de Aminoácidos , Dimerização , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Ligação a Ácido Graxo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Proteínas de Membrana , Dados de Sequência Molecular , Estrutura Secundária de ProteínaRESUMO
At the resolution available from most macromolecular crystals, the X-ray data alone are insufficient to lead to a chemically reasonable structure, so stereochemical restraints are essential. These usually restrain bond lengths, bond angles, planes and chiral volumes. The definition of these restraints and where the values come from are described. A dictionary entry contains information about the atom types, their connectivity and all the appropriate restraints. Torsion angles are not usually restrained, but they do have optimum values. In the special case of flexible five- and six-membered rings, including pentose and hexose sugars, the ring pucker is defined by combinations of torsion angles and the pucker affects the position of substituents.
Assuntos
Carbono/química , Proteínas/química , Biologia Computacional , Cristalização , Cristalografia por Raios X , Ligação de Hidrogênio , Ligantes , Substâncias Macromoleculares , Modelos Moleculares , Modelos Estatísticos , Conformação Molecular , Conformação Proteica , Dobramento de Proteína , EstereoisomerismoRESUMO
Endophilin-A1 is a BAR domain-containing protein enriched at synapses and is implicated in synaptic vesicle endocytosis. It binds to dynamin and synaptojanin via a C-terminal SH3 domain. We examine the mechanism by which the BAR domain and an N-terminal amphipathic helix, which folds upon membrane binding, work as a functional unit (the N-BAR domain) to promote dimerisation and membrane curvature generation. By electron paramagnetic resonance spectroscopy, we show that this amphipathic helix is peripherally bound in the plane of the membrane, with the midpoint of insertion aligned with the phosphate level of headgroups. This places the helix in an optimal position to effect membrane curvature generation. We solved the crystal structure of rat endophilin-A1 BAR domain and examined a distinctive insert protruding from the membrane interaction face. This insert is predicted to form an additional amphipathic helix and is important for curvature generation. Its presence defines an endophilin/nadrin subclass of BAR domains. We propose that N-BAR domains function as low-affinity dimers regulating binding partner recruitment to areas of high membrane curvature.
Assuntos
Aciltransferases/química , Aciltransferases/metabolismo , Membrana Celular/química , Aciltransferases/ultraestrutura , Sequência de Aminoácidos , Animais , Dimerização , Humanos , Lipossomos/química , Fusão de Membrana , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Alinhamento de Sequência , Eletricidade EstáticaRESUMO
Membrane fusion in cells involves the interaction of SNARE proteins on apposing membranes. Formation of SNARE complexes is preceded by tethering events, and a number of protein complexes that are thought to mediate this have been identified. The VFT or GARP complex is required for endosome-Golgi traffic in yeast. It consists of four subunits, one of which, Vps51, has been shown to bind specifically to the SNARE Tlg1, which participates in the same fusion event. We have determined the structure of the N-terminal domain of Tlg1 bound to a peptide from the N terminus of Vps51. Binding depends mainly on residues 18-30 of Vps51. These form a short helix which lies in a conserved groove in the three-helix bundle formed by Tlg1. Surprisingly, although both Vps51 and Tlg1 are required for transport to the late Golgi from endosomes, removal of the Tlg1-binding sequences from Vps51 does not block such traffic in vivo. Thus, this particular interaction cannot be crucial to the process of vesicle docking or fusion.
Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Fusão de Membrana , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos , Mutagênese Sítio-Dirigida , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas SNARE/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Transporte Vesicular/genéticaRESUMO
During clathrin-mediated endocytosis, proteins on the cell surface are selected for inclusion in clathrin-coated vesicles by clathrin adaptors, mainly the adaptor complex AP2. The P2X4 subtype of ATP-gated ion channel has in its C-terminus two putative endocytic motifs: a canonical YXXPhi motif and a non-canonical YXXGPhi motif (YEQGL). We demonstrate that endocytosis of P2X4 receptors is mediated preferentially by the YXXGPhi motif because the YXXPhi motif is inaccessible to AP2 owing to the structure of the channel. The crystal structure of a complex between residues 160-435 of the mu2 subunit of AP2 and a P2X4 C-terminal peptide showed that the YEQGL motif binds to mu2 at the same site as YXXPhi motifs. Y and Phi residues are accommodated in the same hydrophobic pockets in mu2 with the extra residue between them being accommodated by changes in the peptide's backbone configuration, when compared to YXXPhi motifs. These data demonstrate that the family of potential tyrosine-based endocytic signals must be expanded to include motifs with an additional glycine at Y+3 (YXXGPhi).
Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Endocitose/fisiologia , Receptores Purinérgicos P2/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Células Cultivadas , Clatrina/metabolismo , Cristalografia por Raios X , Imunofluorescência , Humanos , Rim/citologia , Modelos Moleculares , Dados de Sequência Molecular , Ratos , Receptores Purinérgicos P2/química , Receptores Purinérgicos P2X4 , Relação Estrutura-AtividadeRESUMO
Clathrin-coated vesicles (CCVs) are responsible for the transport of proteins between various compartments of the secretory and endocytic systems. Clathrin forms a scaffold around these vesicles that is linked to membranes by clathrin adaptors. The adaptors simultaneously bind to clathrin and to transmembrane proteins and/or phospholipids and can also interact with each other and with other components of the CCV formation machinery. The result is a collection of proteins that can make multiple, moderate strength (microM Kd) interactions and thereby establish the dynamic regulatable networks to drive vesicle genesis at the correct time and place in the cell. This review focuses on the structure of clathrin adaptors and how these structures provide functional information on the mechanism of CCV formation.