Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Commun ; 6(1): fcad357, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38229877

RESUMO

A proportion of patients infected with severe acute respiratory syndrome coronavirus 2 experience a range of neuropsychiatric symptoms months after infection, including cognitive deficits, depression and anxiety. The mechanisms underpinning such symptoms remain elusive. Recent research has demonstrated that nervous system injury can occur during COVID-19. Whether ongoing neural injury in the months after COVID-19 accounts for the ongoing or emergent neuropsychiatric symptoms is unclear. Within a large prospective cohort study of adult survivors who were hospitalized for severe acute respiratory syndrome coronavirus 2 infection, we analysed plasma markers of nervous system injury and astrocytic activation, measured 6 months post-infection: neurofilament light, glial fibrillary acidic protein and total tau protein. We assessed whether these markers were associated with the severity of the acute COVID-19 illness and with post-acute neuropsychiatric symptoms (as measured by the Patient Health Questionnaire for depression, the General Anxiety Disorder assessment for anxiety, the Montreal Cognitive Assessment for objective cognitive deficit and the cognitive items of the Patient Symptom Questionnaire for subjective cognitive deficit) at 6 months and 1 year post-hospital discharge from COVID-19. No robust associations were found between markers of nervous system injury and severity of acute COVID-19 (except for an association of small effect size between duration of admission and neurofilament light) nor with post-acute neuropsychiatric symptoms. These results suggest that ongoing neuropsychiatric symptoms are not due to ongoing neural injury.

2.
Nat Med ; 29(10): 2498-2508, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37653345

RESUMO

Post-COVID cognitive deficits, including 'brain fog', are clinically complex, with both objective and subjective components. They are common and debilitating, and can affect the ability to work, yet their biological underpinnings remain unknown. In this prospective cohort study of 1,837 adults hospitalized with COVID-19, we identified two distinct biomarker profiles measured during the acute admission, which predict cognitive outcomes 6 and 12 months after COVID-19. A first profile links elevated fibrinogen relative to C-reactive protein with both objective and subjective cognitive deficits. A second profile links elevated D-dimer relative to C-reactive protein with subjective cognitive deficits and occupational impact. This second profile was mediated by fatigue and shortness of breath. Neither profile was significantly mediated by depression or anxiety. Results were robust across secondary analyses. They were replicated, and their specificity to COVID-19 tested, in a large-scale electronic health records dataset. These findings provide insights into the heterogeneous biology of post-COVID cognitive deficits.


Assuntos
Proteína C-Reativa , COVID-19 , Adulto , Humanos , Estudos Prospectivos , COVID-19/complicações , Biomarcadores , Hospitalização , Cognição
3.
RSC Adv ; 12(7): 4005-4015, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35425456

RESUMO

Treatment options for neurodegenerative conditions such as Parkinson's disease have included the delivery of cells which release dopamine or neurotrophic factors to the brain. Here, we report the development of a novel approach for protecting cells after implantation into the central nervous system (CNS), by developing dual-layer alginate beads that encapsulate therapeutic cells and release an immunomodulatory compound in a sustained manner. An optimal alginate formulation was selected with a view to providing a sustained physical barrier between engrafted cells and host tissue, enabling exchange of small molecules while blocking components of the host immune response. In addition, a potent immunosuppressant, FK506, was incorporated into the outer layer of alginate beads using electrosprayed poly-ε-caprolactone core-shell nanoparticles with prolonged release profiles. The stiffness, porosity, stability and ability of the alginate beads to support and protect encapsulated SH-SY5Y cells was demonstrated, and the release profile of FK506 and its effect on T-cell proliferation in vitro was characterized. Collectively, our results indicate this multi-layer encapsulation technology has the potential to be suitable for use in CNS cell delivery, to protect implanted cells from host immune responses whilst providing permeability to nutrients and released therapeutic molecules.

4.
Anat Rec (Hoboken) ; 301(10): 1628-1637, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30334365

RESUMO

Peripheral nerve injuries (PNI) have a high prevalence and can be debilitating, resulting in life-long loss or disturbance in end-organ function, which compromises quality of life for patients. Current therapies use microsurgical approaches but there is the potential for enhancing recovery through other therapeutic modalities such as; cell-based conduits, gene therapy and small molecules. A number of molecular targets and drugs which have the potential to improve nerve regeneration have been identified, however, there are challenges associated with moving therapies toward clinical translation. Due to the lack of detailed knowledge about the pro-regenerative effect of potential drug treatments, there is a need for effective in vitro models to screen compounds to inform future pre-clinical and clinical studies. The interaction between regenerating neurites and supporting Schwann cells is a key feature of the nerve environment, therefore, in vitro models that mimic this cellular association are useful tools. In this study, we have investigated various cell culture models, including simple monolayer systems and more complex 3D-engineered co-cultures, as models for use in PNI drug development. Anat Rec, 301:1628-1637, 2018. © 2018 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.


Assuntos
Técnicas de Cocultura/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Regeneração Nervosa/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Descoberta de Drogas , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Ibuprofeno/farmacologia , Ibuprofeno/uso terapêutico , Células PC12 , Ratos , Ratos Sprague-Dawley , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA