Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(9)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530366

RESUMO

Aberrant expression of the E26 transformation-specific (ETS) transcription factors characterizes numerous human malignancies. Many of these proteins, including EWS:FLI1 and EWS:ERG fusions in Ewing sarcoma (EwS) and TMPRSS2:ERG in prostate cancer (PCa), drive oncogenic programs via binding to GGAA repeats. We report here that both EWS:FLI1 and ERG bind and transcriptionally activate GGAA-rich pericentromeric heterochromatin. The respective pathogen-like HSAT2 and HSAT3 RNAs, together with LINE, SINE, ERV, and other repeat transcripts, are expressed in EwS and PCa tumors, secreted in extracellular vesicles (EVs), and are highly elevated in plasma of patients with EwS with metastatic disease. High human satellite 2 and 3 (HSAT2,3) levels in EWS:FLI1- or ERG-expressing cells and tumors were associated with induction of G2/M checkpoint, mitotic spindle, and DNA damage programs. These programs were also activated in EwS EV-treated fibroblasts, coincident with accumulation of HSAT2,3 RNAs, proinflammatory responses, mitotic defects, and senescence. Mechanistically, HSAT2,3-enriched cancer EVs induced cGAS-TBK1 innate immune signaling and formation of cytosolic granules positive for double-strand RNAs, RNA-DNA, and cGAS. Hence, aberrantly expressed ETS proteins derepress pericentromeric heterochromatin, yielding pathogenic RNAs that transmit genotoxic stress and inflammation to local and distant sites. Monitoring HSAT2,3 plasma levels and preventing their dissemination may thus improve therapeutic strategies and blood-based diagnostics.


Assuntos
Dano ao DNA , Vesículas Extracelulares , Proteínas de Fusão Oncogênica , Proteína Proto-Oncogênica c-fli-1 , Proteína EWS de Ligação a RNA , Regulador Transcricional ERG , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo , Masculino , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/imunologia , Linhagem Celular Tumoral , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Camundongos , Animais , Heterocromatina/metabolismo , Heterocromatina/genética
2.
Biochemistry (Mosc) ; 87(Suppl 1): S5-S145, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35501983

RESUMO

Y-box binding protein 1 is a member of the cold shock domain (CSD) protein family and one of the most studied proteins associated with a large number of human diseases. This review aims to critically reassess the growing number of pathological functions ascribed to YB-1 in the past decades. The focus is given on the important role of YB-1 and related CSD proteins in the physiology of normal cells. The functional significance of these proteins is highlighted by their high evolutionary conservation from bacteria to men, where they are ubiquitously expressed and involved in coordinating all steps of mRNA biogenesis, including transcription, translation, storage, and degradation. Their activities are especially important under conditions requiring rapid change in the gene expression programs, such as early embryonic development, differentiation, stress, and adaptation to new environments. Therefore, to define a precise role of YB-1 in tumorigenic transformation and in other pathological conditions, it is important to understand its basic properties and functions in normal cells, and how they are interrupted in complex diseases including cancer.


Assuntos
Transcrição Gênica , Proteína 1 de Ligação a Y-Box , Humanos
3.
Cancers (Basel) ; 15(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36612267

RESUMO

We argue here that in many ways, Ewing sarcoma (EwS) is a unique tumor entity and yet, it shares many commonalities with other immunologically cold solid malignancies. From the historical perspective, EwS, osteosarcoma (OS) and other bone and soft-tissue sarcomas were the first types of tumors treated with the immunotherapy approach: more than 100 years ago American surgeon William B. Coley injected his patients with a mixture of heat-inactivated bacteria, achieving survival rates apparently higher than with surgery alone. In contrast to OS which exhibits recurrent somatic copy-number alterations, EwS possesses one of the lowest mutation rates among cancers, being driven by a single oncogenic fusion protein, most frequently EWS-FLI1. In spite these differences, both EwS and OS are allied with immune tolerance and low immunogenicity. We discuss here the potential mechanisms of immune escape in these tumors, including low representation of tumor-specific antigens, low expression levels of MHC-I antigen-presenting molecules, accumulation of immunosuppressive M2 macrophages and myeloid proinflammatory cells, and release of extracellular vesicles (EVs) which are capable of reprogramming host cells in the tumor microenvironment and systemic circulation. We also discuss the vulnerabilities of EwS and OS and potential novel strategies for their targeting.

4.
Cells ; 10(8)2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34440851

RESUMO

Ewing sarcoma (EwS) is an aggressive pediatric cancer of bone and soft tissues characterized by scant T cell infiltration and predominance of immunosuppressive myeloid cells. Given the important roles of extracellular vesicles (EVs) in cancer-host crosstalk, we hypothesized that EVs secreted by EwS tumors target myeloid cells and promote immunosuppressive phenotypes. Here, EVs were purified from EwS and fibroblast cell lines and exhibited characteristics of small EVs, including size (100-170 nm) and exosome markers CD63, CD81, and TSG101. Treatment of healthy donor-derived CD33+ and CD14+ myeloid cells with EwS EVs but not with fibroblast EVs induced pro-inflammatory cytokine release, including IL-6, IL-8, and TNF. Furthermore, EwS EVs impaired differentiation of these cells towards monocytic-derived dendritic cells (moDCs), as evidenced by reduced expression of co-stimulatory molecules CD80, CD86 and HLA-DR. Whole transcriptome analysis revealed activation of gene expression programs associated with immunosuppressive phenotypes and pro-inflammatory responses. Functionally, moDCs differentiated in the presence of EwS EVs inhibited CD4+ and CD8+ T cell proliferation as well as IFNγ release, while inducing secretion of IL-10 and IL-6. Therefore, EwS EVs may promote a local and systemic pro-inflammatory environment and weaken adaptive immunity by impairing the differentiation and function of antigen-presenting cells.


Assuntos
Células Dendríticas/metabolismo , Vesículas Extracelulares/metabolismo , Imunidade Adaptativa , Antígeno B7-1/metabolismo , Diferenciação Celular , Linhagem Celular , Células Dendríticas/citologia , Células Dendríticas/imunologia , Vesículas Extracelulares/transplante , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Ativação Linfocitária , Monócitos/citologia , Monócitos/metabolismo , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia , Linfócitos T/citologia , Linfócitos T/imunologia , Transcriptoma , Microambiente Tumoral
5.
Cancer Res ; 75(9): 1846-58, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25877877

RESUMO

The protein tyrosine phosphatase receptor PTPRN2 is expressed predominantly in endocrine and neuronal cells, where it functions in exocytosis. We found that its immature isoform proPTPRN2 is overexpressed in various cancers, including breast cancer. High proPTPRN2 expression was associated strongly with lymph node-positive breast cancer and poor clinical outcome. Loss of proPTPRN2 in breast cancer cells promoted apoptosis and blocked tumor formation in mice, whereas enforced expression of proPTPRN2 in nontransformed human mammary epithelial cells exerted a converse effect. Mechanistic investigations suggested that ProPTPRN2 elicited these effects through direct interaction with TRAF2, a hub scaffold protein for multiple kinase cascades, including ones that activate NF-κB. Overall, our results suggest PTPRN2 as a novel candidate biomarker and therapeutic target in breast cancer.


Assuntos
Apoptose/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/biossíntese , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Células HCT116 , Células HEK293 , Células HeLa , Xenoenxertos , Humanos , Linfonodos/metabolismo , Linfonodos/patologia , Metástase Linfática , Células MCF-7 , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias/genética , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/metabolismo
6.
J Cell Biol ; 208(7): 913-29, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25800057

RESUMO

Under cell stress, global protein synthesis is inhibited to preserve energy. One mechanism is to sequester and silence mRNAs in ribonucleoprotein complexes known as stress granules (SGs), which contain translationally silent mRNAs, preinitiation factors, and RNA-binding proteins. Y-box binding protein 1 (YB-1) localizes to SGs, but its role in SG biology is unknown. We now report that YB-1 directly binds to and translationally activates the 5' untranslated region (UTR) of G3BP1 mRNAs, thereby controlling the availability of the G3BP1 SG nucleator for SG assembly. YB-1 inactivation in human sarcoma cells dramatically reduces G3BP1 and SG formation in vitro. YB-1 and G3BP1 expression are highly correlated in human sarcomas, and elevated G3BP1 expression correlates with poor survival. Finally, G3BP1 down-regulation in sarcoma xenografts prevents in vivo SG formation and tumor invasion, and completely blocks lung metastasis in mouse models. Together, these findings demonstrate a critical role for YB-1 in SG formation through translational activation of G3BP1, and highlight novel functions for SGs in tumor progression.


Assuntos
Proteínas de Transporte/genética , Grânulos Citoplasmáticos/genética , Biossíntese de Proteínas/genética , Estresse Fisiológico/genética , Proteína 1 de Ligação a Y-Box/genética , Regiões 5' não Traduzidas/genética , Animais , Sítios de Ligação , Proteínas de Transporte/biossíntese , DNA Helicases , Humanos , Antígeno Ki-67/biossíntese , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Estresse Oxidativo/genética , Proteínas de Ligação a Poli-ADP-Ribose , Ligação Proteica , RNA Helicases , Interferência de RNA , Proteínas com Motivo de Reconhecimento de RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Interferente Pequeno , Proteínas de Ligação a RNA/metabolismo , Sarcoma/patologia , Proteína 1 de Ligação a Y-Box/biossíntese
7.
PLoS One ; 9(2): e89649, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586935

RESUMO

The noncluster homeobox gene HOX11/TLX1 (TLX1) is detected at the breakpoint of the t(10;14)(q24;q11) chromosome translocation in patients with T cell acute lymphoblastic leukemia (T-ALL). This translocation results in the inappropriate expression of TLX1 in T cells. The oncogenic potential of TLX1 was demonstrated in IgHµ-TLX1(Tg) mice which develop mature B cell lymphoma after a long latency period, suggesting the requirement of additional mutations to initiate malignancy. To determine whether dysregulation of genes involved in the DNA damage response contributed to tumor progression, we crossed IgHµ-TLX1(Tg) mice with mice deficient in the DNA repair enzyme DNA-PK (Prkdc(Scid/Scid) mice). IgHµ-TLX1(Tg)Prkdc(Scid/Scid) mice developed T-ALL and acute myeloid leukemia (AML) with reduced latency relative to control Prkdc(Scid/Scid) mice. Further analysis of thymi from premalignant mice revealed greater thymic cellularity concomitant with increased thymocyte proliferation and decreased apoptotic index. Moreover, premalignant and malignant thymocytes exhibited impaired spindle checkpoint function, in association with aneuploid karyotypes. Gene expression profiling of premalignant IgHµ-TLX1(Tg)Prkdc(Scid/Scid) thymocytes revealed dysregulated expression of cell cycle, apoptotic and mitotic spindle checkpoint genes in double negative 2 (DN2) and DN3 stage thymocytes. Collectively, these findings reveal a novel synergy between TLX1 and impaired DNA repair pathway in leukemogenesis.


Assuntos
Transformação Celular Neoplásica , Proteína Quinase Ativada por DNA/deficiência , Proteínas de Ligação a DNA/deficiência , Proteínas de Homeodomínio/biossíntese , Proteínas Nucleares/deficiência , Animais , Reparo do DNA , Humanos , Leucemia Mieloide Aguda/etiologia , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células T Precursoras/etiologia , Neoplasias do Timo/química , Transcriptoma
8.
Cell Cycle ; 12(24): 3791-803, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24107631

RESUMO

The Y-box binding protein 1 (YB-1) is a DNA/RNA-binding nucleocytoplasmic shuttling protein whose regulatory effect on many DNA and RNA-dependent events is determined by its localization in the cell. We have shown previously that YB-1 is cleaved by 20S proteasome between E219 and G220, and the truncated N-terminal YB-1 fragment accumulates in the nuclei of cells treated with DNA damaging drugs. We proposed that appearance of truncated YB-1 in the nucleus may predict multiple drug resistance. Here, we compared functional activities of the full-length and truncated YB-1 proteins and showed that the truncated form was more efficient in protecting cells against doxorubicin treatment. Both forms of YB-1 induced changes in expression of various genes without affecting those responsible for drug resistance. Interestingly, although YB-1 cleavage did not significantly affect its DNA binding properties, truncated YB-1 was detected in complexes with Mre11 and Rad50 under genotoxic stress conditions. We conclude that both full-length and truncated YB-1 are capable of protecting cells against DNA damaging agents, and the truncated form may have an additional function in DNA repair.


Assuntos
Dano ao DNA/fisiologia , Reparo do DNA , DNA/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Antibióticos Antineoplásicos/farmacologia , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Camundongos , Células NIH 3T3 , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteína 1 de Ligação a Y-Box/genética
9.
Sci Signal ; 5(255): ra92, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23250396

RESUMO

Insulin-like growth factor-binding protein 7 (IGFBP7) is a secreted factor that suppresses growth, and the abundance of IGFBP7 inversely correlates with tumor progression. Here, we showed that pretreatment of normal and breast cancer cells with IGFBP7 interfered with the activation and internalization of insulin-like growth factor 1 receptor (IGF1R) in response to insulin-like growth factors 1 and 2 (IGF-1/2), resulting in the accumulation of inactive IGF1R on the cell surface and blockade of downstream phosphatidylinositol 3-kinase (PI3K)-AKT signaling. Binding of IGFBP7 and IGF-1 to IGF1R was mutually exclusive, and the N-terminal 97 amino acids of IGFBP7 were important for binding to the extracellular portion of IGF1R and for preventing its activation. Prolonged exposure to IGFBP7 resulted in activation of the translational repressor 4E-binding protein 1 (4E-BP1) and enhanced sensitivity to apoptosis in IGF1R-positive cells. These results support a model whereby IGFBP7 binds to unoccupied IGF1R and suppresses downstream signaling, thereby inhibiting protein synthesis, cell growth, and survival.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas de Neoplasias/metabolismo , Receptor IGF Tipo 1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Fatores de Iniciação em Eucariotos , Feminino , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like II/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Proteínas de Neoplasias/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica/genética , Biossíntese de Proteínas/genética , Receptor IGF Tipo 1/genética , Transdução de Sinais/genética
10.
Semin Cancer Biol ; 22(5-6): 437-45, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22554796

RESUMO

Translational regulation is increasingly recognized as a critical mediator of gene expression. It endows cells with the ability to decide when a particular protein is expressed, thereby ensuring proper and prompt cellular responses to environmental cues. This ability to reprogram protein synthesis and to permit the translation of the respective regulatory messages is particularly important in complex changing environments, including embryonic development, wound healing and environmental stress. Not surprisingly, mistakes in this process can lead to cancer. This review will focus on the mechanisms of translational control operating in normal and cancer cells. We discuss the possibility that progression of primary epithelial tumors into a motile mesenchymal-like phenotype during the invasive phase of metastasis is driven, in part, by a switch from cap-dependent to cap-independent translation.


Assuntos
Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Biossíntese de Proteínas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Progressão da Doença , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Biossíntese de Proteínas/efeitos dos fármacos
11.
Breast Cancer Res Treat ; 133(2): 563-73, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21997538

RESUMO

Insulin-like growth factor binding protein 7 (IGFBP7) has been shown to be a tumor suppressor in a variety of cancers. We previously have shown that IGFBP7 expression is inversely correlated with disease progression and poor outcome in breast cancer. Overexpression of IGFBP7 in MDA-MB-468, a triple-negative breast cancer (TNBC) cell line, resulted in inhibition of growth and migration. Xenografted tumors bearing ectopic IGFBP7 expression were significantly growth-impaired compared to IGFBP7-negative controls, which suggested that IGFBP7 treatment could inhibit breast cancer cell growth. To confirm this notion, 14 human patient primary breast tumors were analyzed by qRTPCR for IGFBP7 expression. The TNBC tumors expressed the lowest levels of IGFBP7 expression, which also correlated with higher tumorigenicity in mice. Furthermore, when breast cancer cell lines were treated with IGFBP7, only the TNBC cell lines were growth inhibited. Treatment of NOD/SCID mice harboring xenografts of TNBC cells with IGFBP7 systemically every 3-4 days inhibited tumorigenesis, with associated anti-angiogenic effects, together with increased apoptosis. Upon examining the mechanism of IGFBP7-mediated growth inhibition in TNBC cells, we found that cells not only were arrested in G1 phase of the cell cycle but also underwent senescence as a result of treatment with IGFBP7. Interestingly, IGFBP7 treatment was also associated with strong activation of the stress-associated p38 MAPK pathway, together with upregulation of p53 and the cyclin-dependent protein kinase (CDK) inhibitor, p21(cip1). Prolonged treatment of cells with IGFBP7 resulted in increased cell death, marked by an increase in apoptotic cells and associated cleaved PARP. This is the first study showing that exogenous IGFBP7 inhibits TNBC cell growth both in vitro and in vivo. Taken together, these results suggest IGFBP7 treatment might have therapeutic potential for TNBC.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Senescência Celular/efeitos dos fármacos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/administração & dosagem , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptor ErbB-2/deficiência , Receptores de Estrogênio/deficiência , Receptores de Progesterona/deficiência , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancer Res ; 71(3): 1060-70, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21148487

RESUMO

The insulin-like growth factor (IGF) 1 receptor (IGF1R) is an important therapeutic target under study in many cancers. Here, we describe a breast cancer model based on expression of the ETV6-NTRK3 (EN) chimeric tyrosine kinase that suggests novel therapeutic applications of IGF1R inhibitors in secretory breast cancers. Originally discovered in congenital fibrosarcomas with t(12;15) translocations, EN was identified subsequently in secretory breast carcinoma (SBC) which represent a variant of invasive ductal carcinoma. Because fibroblast transformation by EN requires the IGF1R axis, we hypothesized a similar dependency may exist in mammary cells and, if so, that IGF1R inhibitors might be useful to block EN-driven breast oncogenesis. In this study, we analyzed EN expressing murine and human mammary epithelial cell lines for transformation properties. Various IGF1R signaling inhibitors, including the dual specificity IGF1R/insulin receptor (INSR) inhibitor BMS-536924, were then tested for effects on three-dimensional Matrigel cell growth, migration, and tumor formation. We found that EN expression increased acinar size and luminal filling in Matrigel cultures and promoted orthotopic tumor growth in mice. Tumors were well differentiated and nonmetastatic, similar to human SBC. The known EN effector pathway, PI3K-Akt, was activated in an IGF1- or insulin-dependent manner. BMS-536924 blocked EN transformation in vitro, whereas BMS-754807, another IGIFR/INSR kinase inhibitor currently in clinical trials, significantly reduced tumor growth in vivo. Importantly, EN model systems mimic the clinical phenotype observed in human SBC. Moreover, EN has a strict requirement for IGF1R or INSR in breast cell transformation. Thus, our findings strongly encourage the evaluation of IGF1R/INSR inhibitors to treat EN-driven breast cancers.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Fusão Oncogênica/biossíntese , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo , Animais , Benzimidazóis/farmacologia , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Transformação Celular Neoplásica , Transição Epitelial-Mesenquimal , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Camundongos , Camundongos Transgênicos , Terapia de Alvo Molecular , Proteína Oncogênica v-akt/metabolismo , Piridonas/farmacologia , Transdução de Sinais , Transplante Heterólogo
13.
Cell Cycle ; 8(18): 2901-6, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19713745

RESUMO

Hyperproliferation induced by various oncogenic proteins, including activated Ras, is the most prominent and well characterized feature of cancerous cells. This property has been exploited in the development of the most successful anti-cancer treatments to target rapidly dividing cells. Here we argue that hyperproliferation may in fact be detrimental to survival during particular stages of cancer progression such as dissemination from primary tumor and establishing metastatic outgrowth. Our recent work has demonstrated that elevation of YB-1 protein levels, which is frequently observed in human cancers, is associated with reduced proliferation rates in disseminated mesenchymal-like breast carcinoma cells. In breast cancer cell lines with activated Ras-MAPK signaling, YB-1 inhibited cellular proliferation, while inducing an epithelial-to-mesenchymal transition (EMT). The underlying mechanism involves YB-1-mediated translational repression of pro-growth transcripts and activation of the messages encoding EMT-associated proteins, many of which are also known to inhibit proliferation. In addition to the lack of epithelial polarity, increased mobility and invasiveness, YB-1-overexpressing cells displayed a remarkable ability to shut down proliferation and survive in anchorage-independent conditions. These findings support the view that while an increase in proliferation is important for the initiation and maintenance of primary tumors, growth inhibition could ultimately be crucial for survival of carcinoma cells in the circulation and secondary organs, thereby leading to the development of a more malignant phenotype.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Metástase Neoplásica/patologia , Proteínas Nucleares/fisiologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Proteína 1 de Ligação a Y-Box
14.
Cancer Cell ; 15(5): 402-15, 2009 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-19411069

RESUMO

Increased expression of the transcription/translation regulatory protein Y-box binding protein-1 (YB-1) is associated with cancer aggressiveness, particularly in breast carcinoma. Here we establish that YB-1 levels are elevated in invasive breast cancer cells and correlate with reduced expression of E-cadherin and poor patient survival. Enforced expression of YB-1 in noninvasive breast epithelial cells induced an epithelial-mesenchymal transition (EMT) accompanied by enhanced metastatic potential and reduced proliferation rates. YB-1 directly activates cap-independent translation of messenger RNAs encoding Snail1 and other transcription factors implicated in downregulation of epithelial and growth-related genes and activation of mesenchymal genes. Hence, translational regulation by YB-1 is a restriction point enabling coordinated expression of a network of EMT-inducing transcription factors, likely acting together to promote metastatic spread.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Mesoderma/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Caderinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/genética , Células Epiteliais/patologia , Humanos , Mesoderma/patologia , Camundongos , Invasividade Neoplásica , Proteínas Nucleares/genética , Biossíntese de Proteínas , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Proteína 1 de Ligação a Y-Box
15.
EMBO J ; 28(1): 58-68, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19078965

RESUMO

The interaction between the poly(A)-binding protein (PABP) and eukaryotic translational initiation factor 4G (eIF4G), which brings about circularization of the mRNA, stimulates translation. General RNA-binding proteins affect translation, but their role in mRNA circularization has not been studied before. Here, we demonstrate that the major mRNA ribonucleoprotein YB-1 has a pivotal function in the regulation of eIF4F activity by PABP. In cell extracts, the addition of YB-1 exacerbated the inhibition of 80S ribosome initiation complex formation by PABP depletion. Rabbit reticulocyte lysate in which PABP weakly stimulates translation is rendered PABP-dependent after the addition of YB-1. In this system, eIF4E binding to the cap structure is inhibited by YB-1 and stimulated by a nonspecific RNA. Significantly, adding PABP back to the depleted lysate stimulated eIF4E binding to the cap structure more potently if this binding had been downregulated by YB-1. Conversely, adding nonspecific RNA abrogated PABP stimulation of eIF4E binding. These data strongly suggest that competition between YB-1 and eIF4G for mRNA binding is required for efficient stimulation of eIF4F activity by PABP.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fator de Iniciação 4F em Eucariotos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Biossíntese de Proteínas , Animais , Extratos Celulares , Linhagem Celular , Camundongos , Modelos Biológicos , Coelhos , Proteína 1 de Ligação a Y-Box
16.
Cell Cycle ; 5(11): 1143-7, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16721060

RESUMO

Current models of translational regulation are mostly focused on how translational factors engage a messenger mRNA to the ribosome to initiate translation. Since the majority of mRNAs in eukaryotes are translated in a cap-dependent manner, the mRNA 5' cap-binding protein eIF4E was characterized as a key player responsible for the recruitment of mRNAs to the initiation complex. The availability of eIF4E is believed to be especially critical for translational activation of mRNAs with extensive secondary structures in their 5'UTRs, many of which code for labile regulatory proteins essential for cell growth or viability. Surprisingly, little attention is paid to the other side of translational control, e.g., to define mechanisms responsible for translational silencing and storage of the above messages. In this review, we discuss the possibility that eIF4E per se may not be sufficient to release mRNAs from translational block. We found that many growth- and stress-related mRNAs are associated with the translational repressor YB-1, which can compete with the eIF4E-driven translation initiation complex for binding to the capped 5' mRNA terminus. Moreover, the cap-dependent repressor activity of YB-1 appears to be negatively regulated via Akt-mediated phosphorylation of the Ser-102 residue of YB-1. Taken together with recent evidence suggesting that translational activation of growth-related messages is a primary cellular response to activation of Ras-Erk and PI3K-Akt signaling pathways, our data suggest that differential expression of specific mRNA subsets is regulated by the PI3K-Akt pathway and achieved via coordinated activation of the components of translational machinery and inactivation of general translational repressors such as YB-1.


Assuntos
Biossíntese de Proteínas/fisiologia , Proteína 1 de Ligação a Y-Box/fisiologia , Células 3T3 , Animais , Linhagem Celular Transformada , Camundongos , RNA Mensageiro
17.
Mol Cell Biol ; 26(1): 277-92, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16354698

RESUMO

YB-1 is a broad-specificity RNA-binding protein that is involved in regulation of mRNA transcription, splicing, translation, and stability. In both germinal and somatic cells, YB-1 and related proteins are major components of translationally inactive messenger ribonucleoprotein particles (mRNPs) and are mainly responsible for storage of mRNAs in a silent state. However, mechanisms regulating the repressor activity of YB-1 are not well understood. Here we demonstrate that association of YB-1 with the capped 5' terminus of the mRNA is regulated via phosphorylation by the serine/threonine protein kinase Akt. In contrast to its nonphosphorylated form, phosphorylated YB-1 fails to inhibit cap-dependent but not internal ribosome entry site-dependent translation of a reporter mRNA in vitro. We also show that similar to YB-1, Akt is associated with inactive mRNPs and that activated Akt may relieve translational repression of the YB-1-bound mRNAs. Using Affymetrix microarrays, we found that many of the YB-1-associated messages encode stress- and growth-related proteins, raising the intriguing possibility that Akt-mediated YB-1 phosphorylation could, in part, increase production of proteins regulating cell proliferation, oncogenic transformation, and stress response.


Assuntos
Biossíntese de Proteínas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação ao Cap de RNA/metabolismo , RNA Mensageiro/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Animais , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Camundongos , Células NIH 3T3 , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Capuzes de RNA/metabolismo , Ribonucleoproteínas/metabolismo
18.
EMBO J ; 24(20): 3602-12, 2005 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-16193061

RESUMO

YB-1 is a DNA/RNA-binding nucleocytoplasmic shuttling protein whose regulatory effect on many DNA- and RNA-dependent events is determined by its localization in the cell. Distribution of YB-1 between the nucleus and the cytoplasm is known to be dependent on nuclear targeting and cytoplasmic retention signals located within the C-terminal portion of YB-1. Here, we report that YB-1 undergoes a specific proteolytic cleavage by the 20S proteasome, which splits off the C-terminal 105-amino-acid-long YB-1 fragment containing a cytoplasmic retention signal. Cleavage of YB-1 by the 20S proteasome in vitro appears to be ubiquitin- and ATP-independent, and is abolished by the association of YB-1 with messenger RNA. We also found that genotoxic stress triggers a proteasome-mediated cleavage of YB-1 in vivo and leads to accumulation of the truncated protein in nuclei of stressed cells. Endoproteolytic activity of the proteasome may therefore play an important role in regulating YB-1 functioning, especially under certain stress conditions.


Assuntos
Dano ao DNA , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Núcleo Celular/química , Núcleo Celular/metabolismo , DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Glicina/metabolismo , Humanos , Camundongos , Mutação , Células NIH 3T3 , Coelhos , Células Tumorais Cultivadas , Ubiquitina/metabolismo
19.
Hum Mol Genet ; 13(18): 2061-74, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15254018

RESUMO

We have analyzed the chromosome 6q21 breakpoint of a non-constitutional t(6;15)(q21;q21) rearrangement in sporadic Wilms' tumor. This identified a novel gene encoding a protein with six N-terminal ankyrin repeats linked to a C-terminal HECT ubiquitin-protein ligase domain. We therefore designated this gene HACE1 (HECT domain and Ankyrin repeat Containing E3 ubiquitin-protein ligase 1). HACE1 is widely expressed in human tissues, including mature and fetal kidney. We show that Hace1 protein possesses intrinsic ubiquitin ligase activity, utilizes UbcH7 as a candidate partner E2 enzyme and localizes predominantly to the endoplasmic reticulum. Although the HACE1 locus was not directly interrupted by the translocation in the index Wilms' case, its expression was markedly lower in tumor tissue compared with adjacent normal kidney. Moreover, HACE1 expression was virtually undetectable in the SK-NEP-1 Wilms' tumor cell line and in four of five additional primary Wilms' tumor cases compared with patient-matched normal kidney. We found no evidence of HACE1 mutations or deletions, but hypermethylation of two upstream CpG islands correlates with low HACE1 expression in tumor samples. Our findings implicate Hace1 as a novel ubiquitin-protein ligase and demonstrate that its expression is very low in primary Wilms' tumors.


Assuntos
Neoplasias Renais/enzimologia , Neoplasias Renais/genética , Ubiquitina-Proteína Ligases/genética , Tumor de Wilms/enzimologia , Tumor de Wilms/genética , Repetição de Anquirina/genética , Linhagem Celular Tumoral , Mapeamento Cromossômico , Cromossomos Humanos Par 6/genética , Metilação de DNA , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Expressão Gênica/genética , Humanos , Espaço Intracelular/química , Espaço Intracelular/metabolismo , Rim/enzimologia , Mutação/genética , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Translocação Genética/genética , Ubiquitina-Proteína Ligases/análise , Ubiquitina-Proteína Ligases/metabolismo
20.
Cancer Res ; 64(1): 286-91, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14729636

RESUMO

Urokinase plasminogen activator (uPA) expression in breast cancer is associated with relapse and a reduction in disease-specific survival. Thus, efforts are under way to identify uPA inhibitors. By screening a chemical library of >1000 compounds, 17-allyaminogeldanamycin (17AAG) was identified as a potent inhibitor of uPA by the National Cancer Institute and is now in Phase I clinical trials. At this time, it remains unclear how 17AAG blocks uPA; one possibility is through disruption of the insulin-like growth factor I receptor (IGF-IR) pathway. This would be consistent with studies from our laboratory showing that activation of IGF-IR results in the induction of uPA protein. In the study described herein, we observed that IGF-IR and uPA were highly expressed in 87 and 55% of breast cancer by screening tumor tissue microarrays representing 930 cases. A significant proportion (52.1% = 354 of 680 cases, P < 0.0001) of the patients had tumors expressing both proteins. uPA alone (P = 0.033) or in combination with IGF-IR (P = 0.0104) was indicative of decreased disease-specific survival. Next, we demonstrated that treating MDA-MB-231 cells with increasing concentrations of 17AAG resulted in IGF-IR degradation (IC(50) = 1.0 micro M) and blocked signal transduction through the Akt and mitogen-activated protein kinase pathways. Finally, we found that 17AAG had a robust inhibitory effect on the production of uPA mRNAand protein in the presence of IGF-I. Thus, our study raises the possibility that 17AAG could prove to be an effective therapeutic agent for a large number of breast cancer patients by inhibiting the IGF-IR and ultimately uPA.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/genética , Receptor IGF Tipo 1/genética , Rifabutina/análogos & derivados , Rifabutina/uso terapêutico , Ativador de Plasminogênio Tipo Uroquinase/genética , Antineoplásicos/uso terapêutico , Sequência de Bases , Benzoquinonas , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Primers do DNA , Feminino , Seguimentos , Humanos , Lactamas Macrocíclicas , Estadiamento de Neoplasias , Valor Preditivo dos Testes , Prognóstico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , RNA Mensageiro/genética , Análise de Sobrevida , Fatores de Tempo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA