Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11637, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773158

RESUMO

Ricin, an extremely potent toxin produced from the seeds of castor plant, Ricinus communis, is ribosome-inactivating protein that blocks cell-protein synthesis. It is considered a biological threat due to worldwide availability of castor beans, massive quantities as a by-product of castor oil production, high stability and ease of production. The consequence of exposure to lethal dose of ricin was extensively described in various animal models. However, it is assumed that in case of aerosolized ricin bioterror attack, the majority of individuals would be exposed to sublethal doses rather than to lethal ones. Therefore, the purpose of current study was to assess short- and long-term effects on physiological parameters and function following sublethal pulmonary exposure. We show that in the short-term, sublethal exposure of mice to ricin resulted in acute lung injury, including interstitial pneumonia, cytokine storm, neutrophil influx, edema and cellular death. This damage was manifested in reduced lung performance and physiological function. Interestingly, although in the long-term, mice recovered from acute lung damage and restored pulmonary and physiological functionality, the reparative process was associated with lasting fibrotic lesions. Therefore, restriction of short-term acute phase of the disease and management of long-term pulmonary fibrosis by medical countermeasures is expected to facilitate the quality of life of exposed survivors.


Assuntos
Ricina , Animais , Ricina/toxicidade , Camundongos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Citocinas/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Feminino , Modelos Animais de Doenças
2.
Toxins (Basel) ; 16(2)2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38393180

RESUMO

Ricin, a highly potent plant-derived toxin, is considered a potential bioterrorism weapon due to its pronounced toxicity, high availability, and ease of preparation. Acute damage following pulmonary ricinosis is characterized by local cytokine storm, massive neutrophil infiltration, and edema formation, resulting in respiratory insufficiency and death. A designated equine polyclonal antibody-based (antitoxin) treatment was developed in our laboratory and proved efficacious in alleviating lung injury and increasing survival rates. Although short-term pathogenesis was thoroughly characterized in antitoxin-treated mice, the long-term damage in surviving mice was never determined. In this study, long-term consequences of ricin intoxication were evaluated 30 days post-exposure in mice that survived antitoxin treatment. Significant pulmonary sequelae were demonstrated in surviving antitoxin-treated mice, as reflected by prominent histopathological changes, moderate fibrosis, increased lung hyperpermeability, and decreased lung compliance. The presented data highlight, for the first time to our knowledge, the possibility of long-term damage development in mice that survived lethal-dose pulmonary exposure to ricin due to antitoxin treatment.


Assuntos
Antitoxinas , Lesão Pulmonar , Insuficiência Respiratória , Ricina , Animais , Cavalos , Camundongos , Antitoxinas/uso terapêutico , Ricina/toxicidade , Pulmão/patologia , Lesão Pulmonar/tratamento farmacológico
3.
Toxins (Basel) ; 14(9)2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36136552

RESUMO

Abrin is a highly toxic protein obtained from the seeds of the rosary pea plant Abrus precatorius, and it is closely related to ricin in terms of its structure and chemical properties. Both toxins inhibit ribosomal function, halt protein synthesis and lead to cellular death. The major clinical manifestations following pulmonary exposure to these toxins consist of severe lung inflammation and consequent respiratory insufficiency. Despite the high similarity between abrin and ricin in terms of disease progression, the ability to protect mice against these toxins by postexposure antibody-mediated treatment differs significantly, with a markedly higher level of protection achieved against abrin intoxication. In this study, we conducted an in-depth comparison between the kinetics of in vivo abrin and ricin intoxication in a murine model. The data demonstrated differential binding of abrin and ricin to the parenchymal cells of the lungs. Accordingly, toxin-mediated injury to the nonhematopoietic compartment was shown to be markedly lower in the case of abrin intoxication. Thus, profiling of alveolar epithelial cells demonstrated that although toxin-induced damage was restricted to alveolar epithelial type II cells following abrin intoxication, as previously reported for ricin, it was less pronounced. Furthermore, unlike following ricin intoxication, no direct damage was detected in the lung endothelial cell population following abrin exposure. Reduced impairment of intercellular junction molecules following abrin intoxication was detected as well. In contrast, similar damage to the endothelial surface glycocalyx layer was observed for the two toxins. We assume that the reduced damage to the lung stroma, which maintains a higher level of tissue integrity following pulmonary exposure to abrin compared to ricin, contributes to the high efficiency of the anti-abrin antibody treatment at late time points after exposure.


Assuntos
Abrina , Abrus , Doenças Transmitidas por Alimentos , Lesão Pulmonar , Intoxicação por Plantas , Ricina , Toxinas Biológicas , Abrina/toxicidade , Animais , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , Camundongos , Ricina/metabolismo , Ricina/toxicidade
4.
Antibodies (Basel) ; 10(4)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34842604

RESUMO

The use of passively-administered neutralizing antibodies is a promising approach for the prevention and treatment of SARS-CoV-2 infection. Antibody-mediated protection may involve immune system recruitment through Fc-dependent activation of effector cells and the complement system. However, the role of Fc-mediated functions in the efficacious in-vivo neutralization of SARS-CoV-2 is not yet clear, and it is of high importance to delineate the role this process plays in antibody-mediated protection. Toward this aim, we have chosen two highly potent SARS-CoV-2 neutralizing human monoclonal antibodies, MD65 and BLN1 that target distinct domains of the spike (RBD and NTD, respectively). The Fc of these antibodies was engineered to include the triple mutation N297G/S298G/T299A that eliminates glycosylation and the binding to FcγR and to the complement system activator C1q. As expected, the virus neutralization activity (in-vitro) of the engineered antibodies was retained. To study the role of Fc-mediated functions, the protective activity of these antibodies was tested against lethal SARS-CoV-2 infection of K18-hACE2 transgenic mice, when treatment was initiated either before or two days post-exposure. Antibody treatment with both Fc-variants similarly rescued the mice from death reduced viral load and prevented signs of morbidity. Taken together, this work provides important insight regarding the contribution of Fc-effector functions in MD65 and BLN1 antibody-mediated protection, which should aid in the future design of effective antibody-based therapies.

5.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830227

RESUMO

Ricin toxin isolated from the castor bean (Ricinus communis) is one of the most potent and lethal molecules known. While the pathophysiology and clinical consequences of ricin poisoning by the parenteral route, i.e., intramuscular penetration, have been described recently in various animal models, the preceding mechanism underlying the clinical manifestations of systemic ricin poisoning has not been completely defined. Here, we show that following intramuscular administration, ricin bound preferentially to the vasculature in both mice and swine, leading to coagulopathy and widespread hemorrhages. Increased levels of circulating VEGF and decreased expression of vascular VE-cadherin caused blood vessel impairment, thereby promoting hyperpermeability in various organs. Elevated levels of soluble heparan sulfate, hyaluronic acid and syndecan-1 were measured in blood samples following ricin intoxication, indicating that the vascular glycocalyx of both mice and swine underwent extensive damage. Finally, by using side-stream dark field intravital microscopy imaging, we determined that ricin poisoning leads to microvasculature malfunctioning, as manifested by aberrant blood flow and a significant decrease in the number of diffused microvessels. These findings, which suggest that glycocalyx shedding and microcirculation dysfunction play a major role in the pathology of systemic ricin poisoning, may serve for the formulation of specifically tailored therapies for treating parenteral ricin intoxication.


Assuntos
Células Endoteliais/efeitos dos fármacos , Glicocálix/efeitos dos fármacos , Ricina/toxicidade , Ricinus/química , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Relação Dose-Resposta a Droga , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Glicocálix/química , Glicocálix/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo , Hidrólise , Injeções Intramusculares , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos , Microcirculação/efeitos dos fármacos , Ricina/isolamento & purificação , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/patologia , Suínos , Sindecana-1/química , Sindecana-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Pathogens ; 10(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34451403

RESUMO

HLA transgenic mice are instrumental for evaluation of human-specific immune responses to viral infection. Mice do not develop COVID-19 upon infection with SARS-CoV-2 due to the strict tropism of the virus to the human ACE2 receptor. The aim of the current study was the implementation of an adenovirus-mediated infection protocol for human ACE2 expression in HLA transgenic mice. Transient pulmonary expression of the human ACE2 receptor in these mice results in their sensitisation to SARS-CoV-2 infection, consequently providing a valuable animal model for COVID-19. Infection results in a transient loss in body weight starting 3 days post-infection, reaching 20-30% loss of weight at day 7 and full recovery at days 11-13 post-infection. The evolution of the disease revealed high reproducibility and very low variability among individual mice. The method was implemented in two different strains of HLA immunized mice. Infected animals developed strong protective humoral and cellular immune responses specific to the viral spike-protein, strictly depending on the adenovirus-mediated human ACE2 expression. Convalescent animals were protected against a subsequent re-infection with SARS-CoV-2, demonstrating that the model may be applied for assessment of efficacy of anti-viral immune responses.

7.
JCI Insight ; 6(12)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33974566

RESUMO

Mice are normally unaffected by SARS coronavirus 2 (SARS-CoV-2) infection since the virus does not bind effectively to the murine version of the angiotensin-converting enzyme 2 (ACE2) receptor molecule. Here, we report that induced mild pulmonary morbidities rendered SARS-CoV-2-refractive CD-1 mice susceptible to this virus. Specifically, SARS-CoV-2 infection after application of low doses of the acute lung injury stimulants bleomycin or ricin caused severe disease in CD-1 mice, manifested by sustained body weight loss and mortality rates greater than 50%. Further studies revealed markedly higher levels of viral RNA in the lungs, heart, and serum of low-dose ricin-pretreated mice compared with non-pretreated mice. Furthermore, lung extracts prepared 2-3 days after viral infection contained subgenomic mRNA and virus particles capable of replication only when derived from the pretreated mice. The deleterious effects of SARS-CoV-2 infection were effectively alleviated by passive transfer of polyclonal or monoclonal antibodies generated against the SARS-CoV-2 receptor binding domain (RBD). Thus, viral cell entry in the sensitized mice seems to depend on viral RBD binding, albeit by a mechanism other than the canonical ACE2-mediated uptake route. This unique mode of viral entry, observed over a mildly injured tissue background, may contribute to the exacerbation of coronavirus disease 2019 (COVID-19) pathologies in patients with preexisting morbidities.


Assuntos
Bleomicina/toxicidade , COVID-19/patologia , Lesão Pulmonar , Ricina/toxicidade , Animais , Chlorocebus aethiops , Comorbidade , Modelos Animais de Doenças , Feminino , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/virologia , Camundongos , Células Vero , Ligação Viral , Internalização do Vírus/efeitos dos fármacos
8.
Nat Commun ; 12(1): 944, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574228

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits high levels of mortality and morbidity and has dramatic consequences on human life, sociality and global economy. Neutralizing antibodies constitute a highly promising approach for treating and preventing infection by this novel pathogen. In the present study, we characterize and further evaluate the recently identified human monoclonal MD65 antibody for its ability to provide protection against a lethal SARS-CoV-2 infection of K18-hACE2 transgenic mice. Eighty percent of the untreated mice succumbed 6-9 days post-infection, while administration of the MD65 antibody as late as 3 days after exposure rescued all infected animals. In addition, the efficiency of the treatment is supported by prevention of morbidity and ablation of the load of infective virions in the lungs of treated animals. The data demonstrate the therapeutic value of human monoclonal antibodies as a life-saving treatment for severe COVID-19 infection.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Antivirais/administração & dosagem , COVID-19/imunologia , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Feminino , Imunoglobulina G/administração & dosagem , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia , Soroconversão , Células Vero , Carga Viral , Tratamento Farmacológico da COVID-19
9.
Toxins (Basel) ; 12(6)2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481526

RESUMO

Ricin, a plant-derived toxin originating from the seeds of Ricinus communis (castor bean plant), is one of the most lethal toxins known. To date, there is no approved post-exposure therapy for ricin exposures. This work demonstrates for the first time the therapeutic efficacy of equine-derived anti-ricin F(ab')2 antibodies against lethal pulmonary and systemic ricin exposures in swine. While administration of the antitoxin at 18 h post-exposure protected more than 80% of both intratracheally and intramuscularly ricin-intoxicated swine, treatment at 24 h post-exposure protected 58% of the intramuscular-exposed swine, as opposed to 26% of the intratracheally exposed animals. Quantitation of the anti-ricin neutralizing units in the anti-toxin preparations confirmed that the disparate protection conferred to swine subjected to the two routes of exposure stems from variance between the two models. Furthermore, dose response experiments showed that approximately 3 times lesser amounts of antibody are needed for high-level protection of the intramuscularly compared to the intratracheally intoxicated swine. This study, which demonstrates the high-level post-exposure efficacy of anti-ricin antitoxin at clinically relevant time-points in a large animal model, can serve as the basis for the formulation of post-exposure countermeasures against ricin poisoning in humans.


Assuntos
Anticorpos Neutralizantes/farmacologia , Antitoxinas/farmacologia , Fragmentos Fab das Imunoglobulinas/farmacologia , Ricina/antagonistas & inibidores , Administração por Inalação , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Cavalos , Injeções Intramusculares , Camundongos , Ricina/administração & dosagem , Ricina/imunologia , Ricina/intoxicação , Sus scrofa , Fatores de Tempo
10.
Sci Rep ; 10(1): 9007, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488096

RESUMO

Ricin, a highly lethal plant-derived toxin, is a potential biological threat agent due to its high availability, ease of production and the lack of approved medical countermeasures for post-exposure treatment. To date, no specific ricin receptors were identified. Here we show for the first time, that the low density lipoprotein receptor-related protein-1 (LRP1) is a major target molecule for binding of ricin. Pretreating HEK293 acetylcholinesterase-producer cells with either anti-LRP1 antibodies or with Receptor-Associated Protein (a natural LRP1 antagonist), or using siRNA to knock-down LRP1 expression resulted in a marked reduction in their sensitivity towards ricin. Binding assays further demonstrated that ricin bound exclusively to the cluster II binding domain of LRP1, via the ricin B subunit. Ricin binding to the cluster II binding domain of LRP1 was significantly reduced by an anti-ricin monoclonal antibody, which confers high-level protection to ricin pulmonary-exposed mice. Finally, we tested the contribution of LRP1 receptor to ricin intoxication of lung cells derived from mice. Treating these cells with anti-LRP1 antibody prior to ricin exposure, prevented their intoxication. Taken together, our findings clearly demonstrate that the LRP1 receptor plays an important role in ricin-induced pulmonary intoxications.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Pulmão/efeitos dos fármacos , Ricina/metabolismo , Ricina/toxicidade , Acetilcolinesterase/metabolismo , Animais , Anticorpos/farmacologia , Anticorpos Neutralizantes/farmacologia , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/imunologia , Pulmão/metabolismo , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos , Microscopia Confocal , Ricina/farmacocinética , Ricina/intoxicação
11.
JNCI Cancer Spectr ; 4(1): pkz067, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32064457

RESUMO

BACKGROUND: Improving lung cancer risk assessment is required because current early-detection screening criteria miss most cases. We therefore examined the utility for lung cancer risk assessment of a DNA Repair score obtained from OGG1, MPG, and APE1 blood tests. In addition, we examined the relationship between the level of DNA repair and global gene expression. METHODS: We conducted a blinded case-control study with 150 non-small cell lung cancer case patients and 143 control individuals. DNA Repair activity was measured in peripheral blood mononuclear cells, and the transcriptome of nasal and bronchial cells was determined by RNA sequencing. A combined DNA Repair score was formed using logistic regression, and its correlation with disease was assessed using cross-validation; correlation of expression to DNA Repair was analyzed using Gene Ontology enrichment. RESULTS: DNA Repair score was lower in case patients than in control individuals, regardless of the case's disease stage. Individuals at the lowest tertile of DNA Repair score had an increased risk of lung cancer compared to individuals at the highest tertile, with an odds ratio (OR) of 7.2 (95% confidence interval [CI] = 3.0 to 17.5; P < .001), and independent of smoking. Receiver operating characteristic analysis yielded an area under the curve of 0.89 (95% CI = 0.82 to 0.93). Remarkably, low DNA Repair score correlated with a broad upregulation of gene expression of immune pathways in patients but not in control individuals. CONCLUSIONS: The DNA Repair score, previously shown to be a lung cancer risk factor in the Israeli population, was validated in this independent study as a mechanism-based cancer risk biomarker and can substantially improve current lung cancer risk prediction, assisting prevention and early detection by computed tomography scanning.

12.
Toxins (Basel) ; 11(6)2019 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-31208156

RESUMO

Ricin, a lethal toxin derived from castor oil beans, is a potential bio-threat due to its high availability and simplicity of preparation. Ricin is prepared according to simple recipes available on the internet, and was recently considered in terrorist, suicide, or homicide attempts involving the parenteral route of exposure. In-depth study of the morbidity developing from parenteral ricin poisoning is mandatory for tailoring appropriate therapeutic measures to mitigate ricin toxicity in such instances. The present study applies various biochemical, hematological, histopathological, molecular, and functional approaches to broadly investigate the systemic effects of parenteral intoxication by a lethal dose of ricin in a murine model. Along with prompt coagulopathy, multi-organ hemorrhages, and thrombocytopenia, ricin induced profound morpho-pathological and functional damage in the spleen, bone marrow, and cardiovascular system. In the heart, diffuse hemorrhages, myocyte necrosis, collagen deposition, and induction in fibrinogen were observed. Severe functional impairment was manifested by marked thickening of the left ventricular wall, decreased ventricular volume, and a significant reduction in stroke volume and cardiac output. Unexpectedly, the differential severity of the ricin-induced damage did not correlate with the respective ricin-dependent catalytic activity measured in the various organs. These findings emphasize the complexity of ricin toxicity and stress the importance of developing novel therapeutic strategies that will combine not only anti-ricin specific therapy, but also will target ricin-induced indirect disturbances.


Assuntos
Substâncias para a Guerra Química/toxicidade , Ricina/toxicidade , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Colágeno/metabolismo , Feminino , Fibrinogênio/metabolismo , Coração/efeitos dos fármacos , Coração/fisiologia , Injeções Intramusculares , Rim/efeitos dos fármacos , Rim/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , Baço/efeitos dos fármacos , Baço/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA