Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Genes (Basel) ; 14(8)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37628696

RESUMO

Maternal smoking in pregnancy (MSP) affects the offspring's DNA methylation (DNAm). There is a lack of knowledge regarding individual differences in susceptibility to exposure to MSP. Glutathione S-transferase (GST) genes are involved in protection against harmful oxidants such as those found in cigarette smoke. This study aimed to test whether polymorphisms in GST genes influence the effect of MSP on offspring DNAm. Using data from the Isle of Wight birth cohort, we assessed the association of MSP and offspring DNAm in 493 mother-child dyads (251 male, 242 female) with the effect-modifying role of GST gene polymorphism (at rs506008, rs574344, rs12736389, rs3768490, rs1537234, and rs1695). MSP was assessed by levels of nicotine and its downstream metabolites (cotinine, norcotinine, and hydroxycotinine) in maternal sera. In males, associations of hydroxycotinine with DNAm at cg18473733, cg25949550, cg11647108, and cg01952185 and norcotinine with DNAm at cg09935388 were modified by GST gene polymorphisms (p-values < 0.05). In females, associations of hydroxycotinine with DNAm at cg12160087 and norcotinine with DNAm at cg18473733 were modified by GST gene polymorphisms (p-values < 0.05). Our study emphasizes the role of genetic polymorphism in GST genes in DNAm's susceptibility to MSP.


Assuntos
Metilação de DNA , Família , Gravidez , Humanos , Feminino , Masculino , Metilação de DNA/genética , Glutationa Transferase/genética , Polimorfismo Genético , Fumar/efeitos adversos , Fumar/genética
2.
Obes Sci Pract ; 9(4): 424-434, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37546290

RESUMO

Objective: To date, epigenetic studies identified differential DNA methylation (DNAm) related to gestational-body mass index (BMI) in offspring at birth. This study investigated whether the identified DNAm in offspring were also associated with BMI trajectories from infancy to age 26 years. Methods: Data of 794 participants from Isle of Wight birth cohort in UK were investigated to study association between BMI trajectories and DNAm related to gestational-BMI at birth. Multinominal logistic regression models were applied to test the association between 1090 DNAm sites reported in three prior epigenome-wide association studies and BMI trajectories. Results: DNAm site cg23089913 (NANOS1) and cg13217064 (SOX14) were associated with early persistent obesity (EPO) and delayed overweight (DOW) trajectories respectively. A higher methylation of cg23089913 showed low odds of being in EPO trajectory (OR: 0.84; 95% CI: 0.76-0.93) while higher methylation of cg13217064 resulted in 1.4-times the odds of being in DOW trajectory when compared to the normal trajectory [Correction added on 22 February 2023, after first online publication: Range of the DNAm site cg23089913 has been changed from 'lower' to 'higher' in the preceding sentence.]. In a gender-stratified analysis, the odds of developing into DOW was 1.8 times in female participants for cg13217064 while not such association was observed in males. Conclusions: Deviations in methylation of cg23089913 (NANOS1) and cg13217064 (SOX14) in newborns may change the risk of having excess body weight.

4.
Respir Res ; 23(1): 194, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906571

RESUMO

BACKGROUND: Body mass index (BMI) has been shown to be associated with lung function. Recent findings showed that DNA methylation (DNAm) variation is likely to be a consequence of changes in BMI. However, whether DNAm mediates the association of BMI with lung function is unknown. We examined the mediating role of DNAm on the association of pre-adolescent BMI trajectories with post-adolescent and adulthood lung function (forced expiratory volume (FEV1), forced vital capacity (FVC), and FEV1/FVC). METHODS: Analyses were undertaken in the Isle of Wight birth cohort (IOWBC). Group-based trajectory modelling was applied to infer latent BMI trajectories from age 1 to 10 years. An R package, ttscreening, was applied to identify CpGs at 10 years potentially associated with BMI trajectories for each sex. Linear regressions were implemented to further screen CpGs for their association with lung function at 18 years. Path analysis, stratified by sex, was applied to each screened CpG to assess its role of mediation. Internal validation was applied to further examine the mediation consistency of the detected CpGs based on lung function at 26 years. Mendelian randomization (MR-base) was used to test possible causal effects of the identified CpGs. RESULTS: Two BMI trajectories (high vs. low) were identified. Of the 442,475 CpG sites, 18 CpGs in males and 33 in females passed screening. Eight CpGs in males and 16 CpGs in females (none overlapping) were identified as mediators. For subjects with high BMI trajectory, high DNAm at all CpGs in males were associated with decreased lung function, while 8 CpGs in females were associated with increased lung function at 18 years. At 26 years, 6 CpGs in males and 14 CpGs in females showed the same direction of indirect effects as those at 18 years. DNAm at CpGs cg19088553 (GRIK2) and cg00612625 (HPSE2) showed a potential causal effect on FEV1. CONCLUSIONS: The effects of BMI trajectory in early childhood on post-adolescence lung function were likely to be mediated by pre-adolescence DNAm in both males and females, but such mediation effects were likely to diminish over time.


Assuntos
Trajetória do Peso do Corpo , Metilação de DNA , Pulmão , Adolescente , Adulto , Índice de Massa Corporal , Criança , Pré-Escolar , Metilação de DNA/fisiologia , Feminino , Volume Expiratório Forçado/fisiologia , Humanos , Lactente , Pulmão/fisiologia , Masculino , Capacidade Vital/fisiologia
5.
Front Vet Sci ; 9: 861623, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464354

RESUMO

Tetranucleotide and pentanucleotide short tandem repeat (hereafter termed tetraSTR and pentaSTR) polymorphisms have properties that make them desirable for DNA profiling and paternity testing. However, certain species, such as the horse, have far fewer tetraSTRs than other species and for this reason dinucleotide STRs (diSTRs) have become the standard for DNA profiling in horses, despite being less desirable for technical reasons. During our testing of a series of candidate genes as potentially underlying a heritable condition characterized by megaesophagus in the Friesian horse breed, we found that good tetraSTRs do exist in horses but, as expected, at a much lower frequency than in other species, e.g., dogs and humans. Using a series of efficient methods developed in our laboratory for the production of multiplexed tetraSTRs in other species, we identified a set of tetra- and pentaSTRs that we developed into a 17-plex panel for the horse, plus a sex-identifying marker near the amelogenin gene. These markers were tested in 128 horses representing 16 breeds as well as crossbred horses, and we found that these markers have useful genetic variability. Average observed heterozygosities (Ho) ranged from 0.53 to 0.89 for the individual markers (0.66 average Ho for all markers), and 0.62-0.82 for expected heterozygosity (He) within breeds (0.72 average He for all markers). The probability of identity (PI) within breeds for which 10 or more samples were available was at least 1.1 x 10-11, and the PI among siblings (PIsib) was 1.5 x 10-5. Stutter was ≤ 11% (average stutter for all markers combined was 6.9%) compared to the more than 30% typically seen with diSTRs. We predict that it will be possible to develop accurate allelic ladders for this multiplex panel that will make cross-laboratory comparisons easier and will also improve DNA profiling accuracy. Although we were only able to exclude candidate genes for Friesian horse megaesophagus with no unexcluded genes that are possibly causative at this point in time, the study helped us to refine the methods used to develop better tetraSTR multiplexed panels for species such as the horse that have a low frequency of tetraSTRs.

6.
Environ Epigenet ; 8(1): dvac002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35317219

RESUMO

Acetaminophen is used by nearly two-thirds of pregnant women. Although considered safe, studies have demonstrated associations between prenatal acetaminophen use and adverse health outcomes in offspring. Since DNA methylation (DNAm) at birth may act as an early indicator of later health, assessments on whether DNAm of newborns is associated with gestational acetaminophen use or its metabolites are needed. Using data from three consecutive generations of the Isle of Wight cohort (F0-grandmothers, F1-mothers, and F2-offspring) we investigated associations between acetaminophen metabolites in F0 serum at delivery with epigenome-wide DNAm in F1 (Guthrie cards) and between acetaminophen use of F1 and F2-cord-serum levels with F2 cord blood DNAm. In epigenome-wide screening, we eliminated non-informative DNAm sites followed by linear regression of informative sites. Based on repeated pregnancies, indication bias analyses tested whether acetaminophen indicated maternal diseases or has a risk in its own right. Considering that individuals with similar intake process acetaminophen differently, metabolites were clustered to distinguish metabolic exposures. Finally, metabolite clusters from F1-maternal and F2-cord sera were tested for their associations with newborn DNAm (F1 and F2). Twenty-one differential DNAm sites in cord blood were associated with reported maternal acetaminophen intake in the F2 generation. For 11 of these cytosine-phosphate-guanine (CpG) sites, an indication bias was excluded and five were replicated in F2 with metabolite clusters. In addition, metabolite clusters showed associations with 25 CpGs in the F0-F1 discovery analysis, of which five CpGs were replicated in the F2-generation. Our results suggest that prenatal acetaminophen use, measured as metabolites, may influence DNAm in newborns.

7.
ERJ Open Res ; 8(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35237685

RESUMO

BACKGROUND: Age of pubertal onset is associated with lung function in adulthood. However, the underlying role of epigenetics as a mediator of this association remains unknown. METHODS: DNA methylation (DNAm) in peripheral blood was measured at age 18 years in the Isle of Wight birth cohort (IOWBC) along with data on age of pubertal events, forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1) at 26 years. Structural equation models were applied to examine mediation effects of DNAm on the association of age at pubertal events with FVC and FEV1. Findings were further tested in the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. RESULTS: In the IOWBC, for females, 21 cytosine-phosphate-guanine sites (CpGs) were shown to mediate the association of age at puberty with FVC or FEV1 at 26 years (p<0.05). In males, DNAm at 20 CpGs was found to mediate the association of age at puberty with FVC (p<0.05). At almost all these CpGs, indirect effects (effects of age at pubertal events on FVC or FEV1 via DNAm) contributed a smaller portion to the total effects compared to direct effects (e.g. at cg08680129, ∼22% of the estimated total effect of age at menarche on FVC at age 26 was contributed by an indirect effect). Among the IOWBC-discovered CpGs available in ALSPAC, none of them was replicated in ALSPAC (p>0.05). CONCLUSIONS: Our findings suggest that post-adolescence DNAm in peripheral blood is likely not to mediate the association of age at pubertal onset with young adulthood FVC or FEV1.

8.
J Pers Med ; 12(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35207690

RESUMO

The role of epigenetics in the pathogenesis of asthma acquisition in adolescence and post-adolescence has been unknown. We carried out a longitudinal epigenome-wide association study, using data from the Isle of Wight Birth Cohort (IOWBC). To improve statistical power, we first screened CpGs based on associations of DNA methylation (DNAm) at an age of 10 years (pre-adolescence) with asthma acquisition at 10-18 years (during adolescence). A logistic regression with repeated measures was applied to CpGs that passed screening to examine the associations of pre-adolescence DNAm with asthma acquisition from 10-18 years and 18-26 years, with an interaction term to evaluate transition period specificity. Findings were further tested in an independent birth cohort, ALSPAC. In total, 205 CpGs (with 150 being females) showed associations with asthma acquisition (main or interaction effects) at FDR = 0.05 in IOWBC, of which 112 (90 being females) showed consistent associations in the ALSPAC. Genes that the identified CpGs were mapped to, e.g., AKAP1 and ENO1, have been shown to be associated with the risk of asthma. Our findings indicated that DNAm at specific CpGs was associated with asthma acquisition. CpGs showing such associations were likely to be different between males and females and, at certain CpGs, were unique to a specific transition period.

9.
Clin Exp Allergy ; 52(5): 658-669, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34995380

RESUMO

BACKGROUND: Little is known about the association of newborn DNA methylation (DNAm) with asthma acquisition across adolescence and early adult life. OBJECTIVE: We aim to identify epigenetic biomarkers in newborns for asthma acquisition during adolescence or young adulthood. METHODS: The Isle of Wight Birth Cohort (IOWBC) (n = 1456) data at ages 10, 18 and 26 years were assessed. To screen cytosine-phosphate-guanine site (CpGs) potentially associated with asthma acquisition, at the genome scale, we examined differentially methylated regions (DMR) using dmrff R package and individual CpG sites using linear regression on such associations. For CpGs that passed screening, we examined their enrichment in biological pathways using their mapping genes and tested their associations with asthma acquisitions using logistic regressions. Findings in IOWBC were tested in an independent cohort, the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. RESULTS: In total, 2636 unique CpGs passed screening, based on which we identified one biological pathway linked to asthma acquisition during adolescence in females (FDR adjusted p-value = .003 in IOWBC). Via logistic regressions, for females, four CpGs were shown to be associated with asthma acquisition during adolescence, and another four CpGs with asthma acquisition in young adulthood (FDR adjusted p-value < .05 in IOWBC) and these eight CpGs were replicated in ALSPAC (all p-values < .05). DNAm at all the identified CpGs was shown to be temporally consistent, and at six of the CpGs was associated with expressions of adjacent or mapping genes in females (all p-values < .05). For males, 622 CpGs were identified in IOWBC (FDR = 0.01), but these were not tested in ALSPAC due to small sample sizes. CONCLUSION AND CLINICAL RELEVANCE: Eight CpGs on LHX5, IL22RA2, SOX11, CBX4, ACPT, CFAP46, MUC4, and ATP1B2 genes have the potential to serve as candidate epigenetic biomarkers in newborns for asthma acquisition in females during adolescence or young adulthood.


Assuntos
Asma , Metilação de DNA , Adolescente , Adulto , Asma/diagnóstico , Asma/genética , Criança , Ilhas de CpG , Epigênese Genética , Epigenômica , Feminino , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Ligases/genética , Estudos Longitudinais , Masculino , Proteínas do Grupo Polycomb/genética , Receptores de Interleucina/genética , Adulto Jovem
10.
Allergy Asthma Clin Immunol ; 17(1): 77, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301314

RESUMO

PURPOSE: Body mass index (BMI) is associated with asthma but associations of BMI temporal patterns with asthma incidence are unclear. Previous studies suggest that DNA methylation (DNAm) is associated with asthma status and variation in DNAm is a consequence of BMI changes. This study assessed the direct and indirect (via DNAm) effects of BMI trajectories in childhood on asthma incidence at young adulthood. METHODS: Data from the Isle of Wight (IoW) birth cohort were included in the analyses. Group-based trajectory modelling was applied to infer latent BMI trajectories from ages 1 to 10 years. An R package, ttscreening, was applied to identify differentially methylated CpGs at age 10 years associated with BMI trajectories, stratified for sex. Logistic regressions were used to further exclude CpGs with DNAm at age 10 years not associated with asthma incidence at 18 years. CpGs discovered via path analyses that mediated the association of BMI trajectories with asthma incidence in the IoW cohort were further tested in an independent cohort, the Avon Longitudinal Study of Children and Parents (ALSPAC). RESULTS: Two BMI trajectories (high vs. normal) were identified. Of the 442,474 CpG sites, DNAm at 159 CpGs in males and 212 in females were potentially associated with BMI trajectories. Assessment of their association with asthma incidence identified 9 CpGs in males and 6 CpGs in females. DNAm at 4 of these 15 CpGs showed statistically significant mediation effects (p-value < 0.05). At two of the 4 CpGs (cg23632109 and cg10817500), DNAm completely mediated the association (i.e., only statistically significant indirect effects were identified). In the ALSPAC cohort, at all four CpGs, the same direction of mediating effects were observed as those found in the IoW cohort, although statistically insignificant. CONCLUSION: The association of BMI trajectory in childhood with asthma incidence at young adulthood is possibly mediated by DNAm.

11.
ERJ Open Res ; 7(3)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34235211

RESUMO

Investigating whether DNA methylation (DNA-M) at an earlier age is associated with lung function at a later age and whether this relationship differs by sex could enable prediction of future lung function deficit. A training/testing-based technique was used to screen 402 714 cytosine-phosphate-guanine dinucleotide sites (CpGs) to assess the longitudinal association of blood-based DNA-M at ages 10 and 18 years with lung function at 18 and 26 years, respectively, in the Isle of Wight birth cohort (IOWBC). Multivariable linear mixed models were applied to the CpGs that passed screening. To detect differentially methylated regions (DMRs), DMR enrichment analysis was conducted. Findings were further examined in the Avon Longitudinal Study of Parents and Children (ALSPAC). Biological relevance of the identified CpGs was assessed using gene expression data. DNA-M at eight CpGs (five CpGs with forced expiratory volume in 1 s (FEV1) and three CpGs with FEV1/forced vital capacity (FVC)) at an earlier age was associated with lung function at a later age regardless of sex, while at 13 CpGs (five CpGs with FVC, three with FEV1 and five with FEV1/FVC), the associations were sex-specific (p FDR <0.05) in IOWBC, with consistent directions of association in ALSPAC (IOWBC-ALSPAC consistent CpGs). cg16582803 (WNT10A) and cg14083603 (ZGPAT) were replicated in ALSPAC for main and sex-specific effects, respectively. Among IOWBC-ALSPAC consistent CpGs, DNA-M at cg01376079 (SSH3) and cg07557690 (TGFBR3) was associated with gene expression both longitudinally and cross-sectionally. In total, 57 and 170 DMRs were linked to lung function longitudinally in males and females, respectively. CpGs showing longitudinal associations with lung function have the potential to serve as candidate markers in future studies on lung function deficit prediction.

12.
Epigenomics ; 13(7): 485-498, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33736458

RESUMO

Aim: Agreement in DNA methylation (DNAm) at the genome scale between blood leukocytes (BL) and bronchial epithelial cells (BEC) is unknown. We examine as to what extent DNAm in BL is comparable with that in BEC and serves as a surrogate for BEC. Materials & methods: Overall agreement (paired t-tests with false discovery rate adjusted p > 0.05) and consistency (Pearson's correlation coefficients >0.5) between two tissues, at each of the 767,412 CpGs, were evaluated. Results: We identified 247,721 CpGs showing overall agreement and 47,371 CpGs showing consistency in DNAm. Identified CpGs are involved in certain immune pathways, indicating the potential of using blood as a biomarker for BEC at those CpGs in lower airway-related diseases. Conclusion: CpGs showing overall agreement and those without overall agreement are distributed differently on the genome.


Assuntos
Brônquios/metabolismo , Metilação de DNA , Epigenoma , Leucócitos/metabolismo , Brônquios/citologia , Estudos de Coortes , Ilhas de CpG , Células Epiteliais/metabolismo , Feminino , Humanos , Masculino , Adulto Jovem
13.
Clin Epigenetics ; 13(1): 5, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407823

RESUMO

BACKGROUND: The pattern of lung function development from pre-adolescence to adulthood plays a significant role in the pathogenesis of respiratory diseases. Inconsistent findings in genetic studies on lung function trajectories, the importance of DNA methylation (DNA-M), and the critical role of adolescence in lung function development motivated the present study of pre-adolescent DNA-M with lung function trajectories. This study investigated epigenome-wide associations of DNA-M at cytosine-phosphate-guanine dinucleotide sites (CpGs) at childhood with lung function trajectories from childhood to young adulthood. METHODS: DNA-M was measured in peripheral blood at age 10 years in the Isle of Wight (IOW) birth cohort. Spirometry was conducted at ages 10, 18, and 26 years. A training/testing-based method was used to screen CpGs. Multivariable logistic regressions were applied to assess the association of DNA-M with lung function trajectories from pre-adolescence to adulthood. To detect differentially methylated regions (DMRs) among CpGs, DMR enrichment analysis was conducted. Findings were further tested in the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Pathway analyses were performed on the mapped genes of the identified CpGs and DMRs. Biological relevance of the identified CpGs was assessed with gene expression. All analyses were stratified by sex. RESULTS: High and low trajectories of FVC, FEV1, and FEV1/FVC in each sex were identified. At PBonferroni < 0.05, DNA-M at 96 distinct CpGs (41 in males) showed associations with FVC, FEV1, and FEV1/FVC trajectories in IOW cohort. These 95 CpGs (cg24000797 was disqualified) were further tested in ALSPAC; 44 CpGs (19 in males) of these 95 showed the same directions of association as in the IOW cohort; and three CpGs (two in males) were replicated. DNA-M at two and four CpGs showed significant associations with the corresponding gene expression in males and females, respectively. At PFDR < 0.05, 23 and 10 DMRs were identified in males and females, respectively. Pathways were identified; some of those were linked to lung function and chronic obstructive lung diseases. CONCLUSION: The identified CpGs at pre-adolescence have the potential to serve as candidate markers for lung function trajectory prediction and chronic lung diseases.


Assuntos
Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/efeitos adversos , Pneumopatias/induzido quimicamente , Pneumopatias/fisiopatologia , Adolescente , Adulto , Fatores Etários , Criança , Pré-Escolar , Feminino , Estudo de Associação Genômica Ampla , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Fatores Sexuais , Reino Unido
14.
Eur Respir J ; 57(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33214203

RESUMO

Little is known about whether DNA methylation (DNAm) of cytosine-phosphate-guanine (CpG) sites at birth predicts patterns of lung function development. We used heel prick DNAm from the F1-generation of Isle of Wight birth cohort (IOWBC-F1) for discovery of CpGs associated with lung function trajectories (forced expiratory volume in 1 s, forced vital capacity, their ratio, and forced expiratory flow at 25-75% of forced vital capacity) over the first 26 years, stratified by sex. We replicated the findings in the Avon Longitudinal Study of Parents and Children (ALSPAC) using cord blood DNAm.Epigenome-wide screening was applied to identify CpGs associated with lung function trajectories in 396 boys and 390 girls of IOWBC-F1. Replication in ALSPAC focussed on lung function at ages 8, 15 and 24 years. Statistically significantly replicated CpGs were investigated for consistency in direction of association between cohorts, stability of DNAm over time in IOWBC-F1, relevant biological processes and for association with gene expression (n=161) in IOWBC F2-generation (IOWBC-F2).Differential DNAm of eight CpGs on genes GLUL, MYCN, HLX, LHX1, COBL, COL18A1, STRA6, and WNT11 involved in developmental processes, were significantly associated with lung function in the same direction in IOWBC-F1 and ALSPAC, and showed stable patterns at birth, aged 10 and 18 years between high and low lung function trajectories in IOWBC-F1. CpGs on LHX1 and COL18A1 were linked to gene expression in IOWBC-F2.In two large cohorts, novel DNAm at birth were associated with patterns of lung function in adolescence and early adulthood providing possible targets for preventative interventions against adverse pulmonary function development.


Assuntos
Metilação de DNA , Epigênese Genética , Adolescente , Adulto , Criança , Feminino , Humanos , Recém-Nascido , Estudos Longitudinais , Pulmão , Masculino , Fenômenos Fisiológicos Respiratórios , Adulto Jovem
15.
Clin Exp Allergy ; 51(2): 318-328, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33150670

RESUMO

BACKGROUND: Underlying biological mechanisms involved in sex differences in asthma status changes from pre- to post-adolescence are unclear. DNA methylation (DNAm) has been shown to be associated with the risk of asthma. OBJECTIVE: We hypothesized that asthma acquisition from pre- to post-adolescence was associated with changes in DNAm during this period at asthma-associated cytosine-phosphate-guanine (CpG) sites and such an association was sex-specific. METHODS: Subjects from the Isle of Wight birth cohort (IOWBC) with DNAm in blood at ages 10 and 18 years (n = 124 females, 151 males) were studied. Using a training-testing approach, epigenome-wide CpGs associated with asthma were identified. Logistic regression was used to examine sex-specific associations of DNAm changes with asthma acquisition between ages 10 and 18 at asthma-associated CpGs. The ALSPAC birth cohort was used for independent replication. To assess functional relevance of identified CpGs, association of DNAm with gene expression in blood was assessed. RESULTS: We identified 535 CpGs potentially associated with asthma. Significant interaction effects of DNAm changes and sex on asthma acquisition in adolescence were found at 13 of the 535 CpGs in IOWBC (P-values <1.0 × 10-3 ). In the replication cohort, consistent interaction effects were observed at 10 of the 13 CpGs. At 7 of these 10 CpGs, opposite DNAm changes across adolescence were observed between sexes in both cohorts. In both cohorts, cg20891917, located on IFRD1 linked to asthma, shows strong sex-specific effects on asthma transition (P-values <.01 in both cohorts). CONCLUSION AND CLINICAL RELEVANCE: Gender reversal in asthma acquisition is associated with opposite changes in DNAm (males vs females) from pre- to post-adolescence at asthma-associated CpGs. These CpGs are potential biomarkers of sex-specific asthma acquisition in adolescence.


Assuntos
Asma/genética , Ilhas de CpG/genética , Metilação de DNA/genética , Expressão Gênica , Adolescente , Asma/epidemiologia , Coorte de Nascimento , Criança , Epigenoma , Feminino , Humanos , Incidência , Modelos Logísticos , Masculino , Remissão Espontânea , Caracteres Sexuais , Distribuição por Sexo , Fatores Sexuais
16.
ERJ Open Res ; 6(4)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33263047

RESUMO

BACKGROUND: Age of pubertal onset is associated with height and lung function in adulthood. It is unknown whether height growth in adolescence mediates the association of age at puberty with early adult lung function. METHODS: Data from the Isle of Wight (IOW) birth cohort (n=1261) were examined in the study. Ages of pubertal events, height at ages 10 and 18 years and lung function parameters (forced vital capacity (FVC) and forced expiratory volume in 1 s (FEV1)) at 26 years were included in a path analysis to assess the mediation effects of height growth. Findings were tested in the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort. RESULTS: In females in the IOW cohort, age at menarche and body hair growth showed a positive indirect association with FVC (menarche: indirect effect coefficient (IEC)=0.13, 95% CI 0.05-0.20, p=1.28×10-3; body hair growth: IEC=0.08, 95% CI 0.01-0.15, p=0.017) and FEV1 (menarche: IEC=0.09, 95% CI 0.01-0.17, p=0.028; body hair growth: IEC=0.07, 95% CI 0.01-0.14, p=0.043) at 26 years through height growth and lung function at 18 years. In males, age at body hair growth (IEC=0.08; 95% CI 0.01-0.15, p=0.047), growth spurt (IEC=0.09; 95% CI 0.01-0.17, p=0.034) and facial hair growth (IEC=0.09; 95% CI 0.02-0.16, p=0.014) had positive indirect effects on FVC at 26 years, but voice deepening did not show statistically significant indirect effects (p>0.05). For pubertal events available in the ALSPAC cohort, results consistent with the IOW cohort were found for both females and males. CONCLUSION: Effects of age of puberty on FVC in early adulthood are likely mediated by height growth during adolescence.

17.
Genome Med ; 12(1): 105, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239103

RESUMO

BACKGROUND: DNA methylation has been shown to be associated with adiposity in adulthood. However, whether similar DNA methylation patterns are associated with childhood and adolescent body mass index (BMI) is largely unknown. More insight into this relationship at younger ages may have implications for future prevention of obesity and its related traits. METHODS: We examined whether DNA methylation in cord blood and whole blood in childhood and adolescence was associated with BMI in the age range from 2 to 18 years using both cross-sectional and longitudinal models. We performed meta-analyses of epigenome-wide association studies including up to 4133 children from 23 studies. We examined the overlap of findings reported in previous studies in children and adults with those in our analyses and calculated enrichment. RESULTS: DNA methylation at three CpGs (cg05937453, cg25212453, and cg10040131), each in a different age range, was associated with BMI at Bonferroni significance, P < 1.06 × 10-7, with a 0.96 standard deviation score (SDS) (standard error (SE) 0.17), 0.32 SDS (SE 0.06), and 0.32 BMI SDS (SE 0.06) higher BMI per 10% increase in methylation, respectively. DNA methylation at nine additional CpGs in the cross-sectional childhood model was associated with BMI at false discovery rate significance. The strength of the associations of DNA methylation at the 187 CpGs previously identified to be associated with adult BMI, increased with advancing age across childhood and adolescence in our analyses. In addition, correlation coefficients between effect estimates for those CpGs in adults and in children and adolescents also increased. Among the top findings for each age range, we observed increasing enrichment for the CpGs that were previously identified in adults (birth Penrichment = 1; childhood Penrichment = 2.00 × 10-4; adolescence Penrichment = 2.10 × 10-7). CONCLUSIONS: There were only minimal associations of DNA methylation with childhood and adolescent BMI. With the advancing age of the participants across childhood and adolescence, we observed increasing overlap with altered DNA methylation loci reported in association with adult BMI. These findings may be compatible with the hypothesis that DNA methylation differences are mostly a consequence rather than a cause of obesity.


Assuntos
Índice de Massa Corporal , Metilação de DNA , Epigênese Genética , Obesidade/genética , Parto , Adolescente , Criança , Pré-Escolar , Ilhas de CpG , Estudos Transversais , Epigenoma , Feminino , Sangue Fetal , Humanos , Masculino , Obesidade Infantil/genética , Gravidez
18.
Epigenet Insights ; 13: 2516865720923395, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754683

RESUMO

The cause and underlying mechanisms that contribute to asthma pathogenesis are not well known. Both genome- and epigenome-wide association studies have identified genes associated with asthma risk. It is unknown to what extent genes identified in these two types of studies overlap. Based on existing literature and the DisGeNET database, we extracted overlapping genes identified in genetic and epigenetic studies of childhood asthma. Through analyses of variance, we assessed whether DNA methylation (DNAm) at 5'-C-phosphate-G-3' (CpGs) on the overlapping genes was associated with neighboring single-nucleotide polymorphisms (SNPs) within 1M base pairs (bps) and with low linkage disequilibrium (r 2 < 0.2) in the childhood asthma-related genes. In total, 285 genes from genetic studies and 226 genes from epigenetic studies were shown to be associated with asthma risk, of which six overlap. Of the six genes, 79 CpGs and 8229 unique neighboring SNPs (1M bps) were included in methylation quantitative loci (methQTL) assessment analyses. We tested the association of DNAm at each of the 79 CpG sites with its neighboring SNPs. After adjusting for multiple testing by controlling the false discovery rate to 0.05 when testing methQTL for each CpG site, we found statistically significant associations in three genes with their neighboring SNPs and identified 34 unique methQTLs. The rather limited overlap in genes between genetic and epigenetic studies on asthma and the absence of methQTL in some of the overlapping genes highlight a need to jointly, rather than independently, examine genetic and epigenetic effects on asthma risk to improve our understanding of the underlying mechanisms of asthma.

20.
Artigo em Inglês | MEDLINE | ID: mdl-32443666

RESUMO

Several small studies have shown associations between breastfeeding and genome-wide DNA methylation (DNAm). We performed a comprehensive Epigenome-Wide Association Study (EWAS) to identify associations between breastfeeding and DNAm patterns in childhood. We analysed DNAm data from the Isle of Wight Birth Cohort at birth, 10, 18 and 26 years. The feeding method was categorized as breastfeeding duration >3 months and >6 months, and exclusive breastfeeding duration >3 months. EWASs using robust linear regression were performed to identify differentially methylated positions (DMPs) in breastfed and non-breastfed children at age 10 (false discovery rate of 5%). Differentially methylated regions (DMRs) were identified using comb-p. The persistence of significant associations was evaluated in neonates and individuals at 18 and 26 years. Two DMPs, in genes SNX25 and LINC00840, were significantly associated with breastfeeding duration >6 months at 10 years and was replicated for >3 months of exclusive breastfeeding. Additionally, a significant DMR spanning the gene FDFT1 was identified in 10-year-old children who were exposed to a breastfeeding duration >3 months. None of these signals persisted to 18 or 26 years. This study lends further support for a suggestive role of DNAm in the known benefits of breastfeeding on a child's future health.


Assuntos
Aleitamento Materno , Epigênese Genética , Epigenoma , Adolescente , Criança , Metilação de DNA , Feminino , Seguimentos , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA